現在提供此產品的更新版本

open-in-new 比較替代產品
引腳對引腳的功能與所比較的產品相同
LM148QML 現行 軍用級、四路、36-V、900-kHz 運算放大器 Low power (0.6 mA)
TLC2254AM 現行 軌至軌 uPower 精密進階 LinCMOS™ 四路運算放大器 Lower offset voltage (0.85 mV), lower power (0.035 mA), lower noise (19 nV/√Hz)

產品詳細資料

Number of channels 4 Total supply voltage (+5 V = 5, ±5 V = 10) (max) (V) 44 Total supply voltage (+5 V = 5, ±5 V = 10) (min) (V) 4 Rail-to-rail In to V- GBW (typ) (MHz) 6 Slew rate (typ) (V/µs) 45 Vos (offset voltage at 25°C) (max) (mV) 1.5 Iq per channel (typ) (mA) 3.45 Vn at 1 kHz (typ) (nV√Hz) 10.5 Rating Military Operating temperature range (°C) -55 to 125 Offset drift (typ) (µV/°C) 1.7 Features High Cload Drive Input bias current (max) (pA) 1500000 CMRR (typ) (dB) 108 Iout (typ) (A) 0.031 Architecture Bipolar Input common mode headroom (to negative supply) (typ) (V) -0.3 Input common mode headroom (to positive supply) (typ) (V) -1.8 Output swing headroom (to negative supply) (typ) (V) 0.1 Output swing headroom (to positive supply) (typ) (V) -0.8
Number of channels 4 Total supply voltage (+5 V = 5, ±5 V = 10) (max) (V) 44 Total supply voltage (+5 V = 5, ±5 V = 10) (min) (V) 4 Rail-to-rail In to V- GBW (typ) (MHz) 6 Slew rate (typ) (V/µs) 45 Vos (offset voltage at 25°C) (max) (mV) 1.5 Iq per channel (typ) (mA) 3.45 Vn at 1 kHz (typ) (nV√Hz) 10.5 Rating Military Operating temperature range (°C) -55 to 125 Offset drift (typ) (µV/°C) 1.7 Features High Cload Drive Input bias current (max) (pA) 1500000 CMRR (typ) (dB) 108 Iout (typ) (A) 0.031 Architecture Bipolar Input common mode headroom (to negative supply) (typ) (V) -0.3 Input common mode headroom (to positive supply) (typ) (V) -1.8 Output swing headroom (to negative supply) (typ) (V) 0.1 Output swing headroom (to positive supply) (typ) (V) -0.8
CDIP (J) 14 130.4652 mm² 19.56 x 6.67 LCCC (FK) 20 79.0321 mm² 8.89 x 8.89
  • Low Noise
  • 10 Hz...15 nV/Hz\
  • 1 kHz...10.5 nV/Hz\
  • 10000-pF Load Capability
  • 20-mA Min Short-Circuit Output Current
  • 27-V/µs Min Slew Rate
  • High Gain-Bandwidth Product...5.9 MHz
  • Low VIO ...500 µV Max at 25°C
  • Single or Split Supply...4 V to 44 V
  • Fast Settling Time
  • 340 ns to 0.1%
  • 400 ns to 0.01%
  • Saturation Recovery...150 ns
  • Large Output Swing
  • VCC– +0.1 V to VCC+ –1 V
  • Low Noise
  • 10 Hz...15 nV/Hz\
  • 1 kHz...10.5 nV/Hz\
  • 10000-pF Load Capability
  • 20-mA Min Short-Circuit Output Current
  • 27-V/µs Min Slew Rate
  • High Gain-Bandwidth Product...5.9 MHz
  • Low VIO ...500 µV Max at 25°C
  • Single or Split Supply...4 V to 44 V
  • Fast Settling Time
  • 340 ns to 0.1%
  • 400 ns to 0.01%
  • Saturation Recovery...150 ns
  • Large Output Swing
  • VCC– +0.1 V to VCC+ –1 V

The TLE214x and TLE214xA devices are high-performance, internally compensated operational amplifiers built using Texas Instruments complementary bipolar Excalibur process. The TLE214xA is a tighter offset voltage grade of the TLE214x. Both are pin-compatible upgrades to standard industry products.

The design incorporates an input stage that simultaneously achieves low audio-band noise of 10.5 nV//100-pF load is useful in fast actuator/positioning drivers. Under similar test conditions, settling time to 0.01% is 400 ns.

The devices are stable with capacitive loads up to 10 nF, although the 6-MHz bandwidth decreases to 1.8 MHz at this high loading level. As such, the TLE214x and TLE214xA are useful for low-droop sample-and-holds and direct buffering of long cables, including 4-mA to 20-mA current loops.

The special design also exhibits an improved insensitivity to inherent integrated circuit component mismatches as is evidenced by a 500-µV maximum offset voltage and 1.7-µV/°C typical drift. Minimum common-mode rejection ratio and supply-voltage rejection ratio are 85 dB and 90 dB, respectively.

Device performance is relatively independent of supply voltage over the ±2-V to ±22-V range. Inputs can operate between VCC– – 0.3 to VCC+ – 1.8 V without inducing phase reversal, although excessive input current may flow out of each input exceeding the lower common-mode input range. The all-npn output stage provides a nearly rail-to-rail output swing of VCC– – 0.1 to VCC+ – 1 V under light current-loading conditions. The device can sustain shorts to either supply since output current is internally limited, but care must be taken to ensure that maximum package power dissipation is not exceeded.

Both versions can also be used as comparators. Differential inputs of VCC± can be maintained without damage to the device. Open-loop propagation delay with TTL supply levels is typically 200 ns. This gives a good indication as to output stage saturation recovery when the device is driven beyond the limits of recommended output swing.

Both the TLE214x and TLE214xA are available in a wide variety of packages, including both the industry-standard 8-pin small-outline version and chip form for high-density system applications. The C-suffix devices are characterized for operation from 0°C to 70°C, I-suffix devices from –40°C to 105°C, and M-suffix devices over the full military temperature range of –55°C to 125°C.

The TLE214x and TLE214xA devices are high-performance, internally compensated operational amplifiers built using Texas Instruments complementary bipolar Excalibur process. The TLE214xA is a tighter offset voltage grade of the TLE214x. Both are pin-compatible upgrades to standard industry products.

The design incorporates an input stage that simultaneously achieves low audio-band noise of 10.5 nV//100-pF load is useful in fast actuator/positioning drivers. Under similar test conditions, settling time to 0.01% is 400 ns.

The devices are stable with capacitive loads up to 10 nF, although the 6-MHz bandwidth decreases to 1.8 MHz at this high loading level. As such, the TLE214x and TLE214xA are useful for low-droop sample-and-holds and direct buffering of long cables, including 4-mA to 20-mA current loops.

The special design also exhibits an improved insensitivity to inherent integrated circuit component mismatches as is evidenced by a 500-µV maximum offset voltage and 1.7-µV/°C typical drift. Minimum common-mode rejection ratio and supply-voltage rejection ratio are 85 dB and 90 dB, respectively.

Device performance is relatively independent of supply voltage over the ±2-V to ±22-V range. Inputs can operate between VCC– – 0.3 to VCC+ – 1.8 V without inducing phase reversal, although excessive input current may flow out of each input exceeding the lower common-mode input range. The all-npn output stage provides a nearly rail-to-rail output swing of VCC– – 0.1 to VCC+ – 1 V under light current-loading conditions. The device can sustain shorts to either supply since output current is internally limited, but care must be taken to ensure that maximum package power dissipation is not exceeded.

Both versions can also be used as comparators. Differential inputs of VCC± can be maintained without damage to the device. Open-loop propagation delay with TTL supply levels is typically 200 ns. This gives a good indication as to output stage saturation recovery when the device is driven beyond the limits of recommended output swing.

Both the TLE214x and TLE214xA are available in a wide variety of packages, including both the industry-standard 8-pin small-outline version and chip form for high-density system applications. The C-suffix devices are characterized for operation from 0°C to 70°C, I-suffix devices from –40°C to 105°C, and M-suffix devices over the full military temperature range of –55°C to 125°C.

下載 觀看有字幕稿的影片 影片

技術文件

star =TI 所選的此產品重要文件
找不到結果。請清除您的搜尋條件,然後再試一次。
檢視所有 5
類型 標題 日期
* Data sheet Excalibur Low-Noise High-Speed Precision Operational Amplifiers . datasheet (Rev. D) 2012年 10月 11日
* SMD TLE2144AM SMD 5962-93216 2016年 6月 21日
E-book The Signal e-book: A compendium of blog posts on op amp design topics 2017年 3月 28日
Application note TLE2141 and TLE2141-Q1 EMI Immunity Performance (Rev. B) 2015年 7月 1日
Application note TLE2141, TLE2142, TLE2144 EMI Immunity Performance 2012年 9月 24日

設計與開發

如需其他條款或必要資源,請按一下下方的任何標題以檢視詳細頁面 (如有)。

計算工具

ANALOG-ENGINEER-CALC — 類比工程師計算機

The Analog Engineer’s Calculator is designed to speed up many of the repetitive calculations that analog circuit design engineers use on a regular basis. This PC-based tool provides a graphical interface with a list of various common calculations ranging from setting op-amp gain with feedback (...)
設計工具

CIRCUIT060013 — 具有 T 網路回饋電路的反相放大器

此設計可反轉輸入訊號 VIN,並使用 1000 V/V 或 60 dB 訊號增益。具有 T 回饋網路的反相放大器可在沒有較小 R4 值或超大回饋電阻器值的情況下獲得高增益。
設計工具

CIRCUIT060015 — 可調式參考電壓電路

此電路結合反相及非反相放大器,讓參考電壓可從負輸入電壓向上調整至輸入電壓。可加入增益以提高最大負參考位準。
設計工具

CIRCUIT060074 — 具有比較器電路的高壓側電流感測

此高壓側電流感測解決方案使用一個具有軌對軌輸入共模範圍的比較器,若負載電流上升到 1 A 以上,便在比較器輸出 (COMP OUT) 建立過電流警示 (OC 警示) 訊號。此實作中的 OC 訊號為低電位作動。因此當超過 1-A 閾值時,比較器輸出會變低。實作磁滯後會在負載電流降低至 0.5 A (減少 50%) 時,讓 OC-Alert 返回邏輯高狀態。此電路利用開漏輸出比較器,為控制數位邏輯輸入針腳而進行電平轉換輸出高邏輯電平。對於需要驅動 MOSFET 開關閘極的應用,建議使用具推挽輸出的比較器。
模擬工具

PSPICE-FOR-TI — PSpice® for TI 設計與模擬工具

PSpice® for TI is a design and simulation environment that helps evaluate functionality of analog circuits. This full-featured, design and simulation suite uses an analog analysis engine from Cadence®. Available at no cost, PSpice for TI includes one of the largest model libraries in the (...)
模擬工具

TINA-TI — 基於 SPICE 的類比模擬程式

TINA-TI provides all the conventional DC, transient and frequency domain analysis of SPICE and much more. TINA has extensive post-processing capability that allows you to format results the way you want them. Virtual instruments allow you to select input waveforms and probe circuit nodes voltages (...)
使用指南: PDF
封裝 引腳 下載
CDIP (J) 14 檢視選項
LCCC (FK) 20 檢視選項

訂購與品質

內含資訊:
  • RoHS
  • REACH
  • 產品標記
  • 鉛塗層/球物料
  • MSL 等級/回焊峰值
  • MTBF/FIT 估算值
  • 材料內容
  • 資格摘要
  • 進行中可靠性監測
內含資訊:
  • 晶圓廠位置
  • 組裝地點

支援與培訓

內含 TI 工程師技術支援的 TI E2E™ 論壇

內容係由 TI 和社群貢獻者依「現狀」提供,且不構成 TI 規範。檢視使用條款

若有關於品質、封裝或訂購 TI 產品的問題,請參閱 TI 支援。​​​​​​​​​​​​​​

影片