SLAS760D May 2011 – November 2015 ADS5263
PRODUCTION DATA.
| MIN | MAX | UNIT | |
|---|---|---|---|
| Supply voltage, AVDD | –0.3 | 3.9 | V |
| Supply voltage, LVDD | –0.3 | 2.2 | V |
| Voltage between AGND and DRGND | –0.3 | 0.3 | V |
| Voltage applied to analog input pins – INP_A, INM_A, INP_B, INM_B | –0.3 | minimum (3.6, AVDD + 0.3 V) | V |
| Voltage applied to input pins – CLKP, CLKM, RESET, SCLK, SDATA, CSZ | –0.3 | AVDD + 0.3 | V |
| Voltage applied to reference input pins | –0.3 | 2.8 | V |
| Operating free-air temperature, TA | –40 | 85 | °C |
| Operating junction temperature, TJ | 125 | °C | |
| Storage temperature, Tstg | –65 | 150 | °C |
| VALUE | UNIT | |||
|---|---|---|---|---|
| V(ESD) | Electrostatic discharge | Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) | ±2000 | V |
| THERMAL METRIC(1) | ADS5263 | UNIT | |
|---|---|---|---|
| RGC (VQFN) | |||
| 64 PINS | |||
| RθJA | Junction-to-ambient thermal resistance | 20.6 | °C/W |
| RθJC(top) | Junction-to-case (top) thermal resistance | 6.1 | °C/W |
| RθJB | Junction-to-board thermal resistance | 2.7 | °C/W |
| ψJT | Junction-to-top characterization parameter | 0.2 | °C/W |
| ψJB | Junction-to-board characterization parameter | 2.6 | °C/W |
| RθJC(bot) | Junction-to-case (bottom) thermal resistance | 0.4 | °C/W |
| PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | ||
|---|---|---|---|---|---|---|---|
| DIGITAL INPUTS – RESET, SCLK, SDATA, CS, PDN, SYNC, INT/EXT | |||||||
| VIH | High-level input voltage | All digital inputs support 1.8-V and 3.3-V CMOS logic levels. | 1.3 | V | |||
| VIL | Low-level input voltage | 0.4 | V | ||||
| IIH | High-level input current | SDATA, SCLK, CS (1) | VHIGH = 1.8 V | 5 | μA | ||
| IIL | Low-level input current | SDATA, SCLK, CS | VLOW = 0 V | 0 | μA | ||
| DIGITAL CMOS OUTPUT – SDOUT | |||||||
| VOH | High-level output voltage | IOH = 100 µA | AVDD – 0.05 | V | |||
| VOL | Low-level output voltage | IOL = 100 µA | 0.05 | V | |||
| DIGITAL OUTPUTS – LVDS INTERFACE (OUT1P/M TO OUT8P/M, ADCLKP/M, LCLKP/M) | |||||||
| VODH | High-level output differential voltage | With external 100-Ω termination | 275 | 370 | 465 | mV | |
| VODL | Low-level output differential voltage | With external 100-Ω termination | –465 | –370 | –275 | mV | |
| VOCM | Output common-mode voltage | 1000 | 1200 | 1400 | mV | ||
| MIN | TYP | MAX | UNIT | |||
|---|---|---|---|---|---|---|
| tj | Aperture jitter | 220 | fs rms | |||
| tA | Aperture delay | Time delay between rising edge of input clock and the actual sampling instant | 3 | ns | ||
| Wake-up time | Time to valid data after coming out of STANDBY mode | 10 | μs | |||
| Time to valid data after coming out of global power down | 60 | |||||
| ADC latency | Latency of ADC alone, excludes the delay from input clock to output clock (tPDI), Figure 3 | 16 | Clock cycles | |||
| 2 WIRE, 8× SERIALIZATION (4) | ||||||
| tsu | Data setup time | Data valid (5) to zero-crossing of LCLKP | 0.23 | ns | ||
| th | Data hold time | Zero-crossing of LCLKP to data becoming invalid(5) | 0.31 | ns | ||
| tPDI | Clock propagation delay | Input clock rising edge crossover to output frame clock ADCLKP rising edge crossover, tPDI = (ts/4) + tdelay | 6.8 | 8.8 | 10.8 | ns |
| Variation of tPDI | Between two devices at same temperature and LVDD supply | ±0.6 | ns | |||
| LVDS bit clock duty cycle | Duty cycle of differential clock, (LCLKP-LCLKM) | 50% | ||||
| tRISE
tFALL |
Data rise time, Data fall time |
Rise time measured from –100 mV to 100 mV, Fall time measured from 100 mV to –100 mV 10 MSPS ≤ Sampling frequency ≤ 100 MSPS |
0.17 | ns | ||
| tCLKRISE
tCLKFALL |
Output clock rise time, Output clock fall time |
Rise time measured from –100 mV to 100 mV Fall time measured from 100 mV to –100 mV 10 MSPS ≤ Sampling frequency ≤ 100 MSPS |
0.2 | ns | ||
| SAMPLING FREQUENCY, MSPS | SETUP TIME | HOLD TIME | UNIT | ||||
|---|---|---|---|---|---|---|---|
| MIN | TYP | MAX | MIN | TYP | MAX | ||
| 100 | 0.23 | 0.31 | ns | ||||
| 80 | 0.47 | 0.47 | ns | ||||
| 65 | 0.56 | 0.7 | ns | ||||
| 50 | 0.66 | 1 | ns | ||||
| 20 | 2.7 | 2.8 | ns | ||||
| SAMPLING FREQUENCY, MSPS | SETUP TIME | HOLD TIME | UNIT | ||||
|---|---|---|---|---|---|---|---|
| MIN | TYP | MAX | MIN | TYP | MAX | ||
| 65 | 0.15 | 0.31 | ns | ||||
| 50 | 0.27 | 0.35 | ns | ||||
| 40 | 0.45 | 0.55 | ns | ||||
| 20 | 1.1 | 1.4 | ns | ||||
| Clock Propagation Delay tPDI = (ts/8) + tdelay 10 MSPS < Sampling Frequency < 65 MSPS |
tdelay | ns | |||||
| MIN | TYP | MAX | ns | ||||
| 6.8 | 8.8 | 10.8 | ns | ||||
| SAMPLING FREQUENCY, MSPS | SETUP TIME | HOLD TIME | UNIT | ||||
|---|---|---|---|---|---|---|---|
| MIN | TYP | MAX | MIN | TYP | MAX | ||
| 100 | 0.29 | 0.39 | ns | ||||
| 80 | 0.51 | 0.60 | ns | ||||
| 65 | 0.58 | 0.82 | ns | ||||
| 50 | 0.85 | 1.20 | ns | ||||
| 20 | 3.2 | 3.3 | ns | ||||
| Clock Propagation Delay tPDI = (ts/3.5) + tdelay 10 MSPS < Sampling Frequency < 100 MSPS |
tdelay | ns | |||||
| MIN | TYP | MAX | ns | ||||
| 6.8 | 8.8 | 10.8 | ns | ||||
| SAMPLING FREQUENCY, MSPS | SETUP TIME | HOLD TIME | UNIT | ||||
|---|---|---|---|---|---|---|---|
| MIN | TYP | MAX | MIN | TYP | MAX | ||
| 65 | 0.19 | 0.28 | ns | ||||
| 50 | 0.37 | 0.42 | ns | ||||
| 30 | 0.70 | 1.0 | ns | ||||
| 20 | 1.3 | 1.5 | ns | ||||
| Clock Propagation Delay tPDI = (ts/7) + tdelay 10 MSPS < Sampling Frequency < 65 MSPS |
tdelay | ns | |||||
| MIN | TYP | MAX | ns | ||||
| 6.8 | 8.8 | 10.8 | ns | ||||
| MIN | TYP | MAX | UNIT | ||
|---|---|---|---|---|---|
| fSCLK | SCLK frequency (= 1/ tSCLK) | > DC | 20 | MHz | |
| tSLOADS | CS to SCLK setup time | 25 | ns | ||
| tSLOADH | SCLK to CS hold time | 25 | ns | ||
| tDS | SDATA setup time | 25 | ns | ||
| tDH | SDATA hold time | 25 | ns | ||
| PARAMETER | TEST CONDITIONS | MIN | TYP | MAX | UNIT | |
|---|---|---|---|---|---|---|
| t1 | Power-on delay | Delay from power up of AVDD and LVDD to RESET pulse active | 1 | ms | ||
| t2 | Reset pulse duration | Pulse duration of active RESET signal | 50 | ns | ||
| t3 | Register write delay | Delay from RESET disable to CS active | 100 | ns | ||
NOTE:
A high-going pulse on RESET pin is required in serial interface mode in case of initialization through hardware reset. For parallel interface operation, RESET has to be tied permanently HIGH.
Figure 2. LVDS Timing
Figure 3. Latency Diagram
Figure 4. LVDS Output Voltage Levels
Figure 5. FFT for 3-MHz Input Signal, fS = 40 MSPS
Figure 7. FFT for 3-MHz Input Signal, fS = 80 MSPS
Figure 9. FFT for 65-MHz Input Signal, fS = 80 MSPS
Figure 11. FFT for 15-MHz Input Signal, fS = 100 MSPS
Figure 15. SFDR vs Input Frequency
Figure 17. SFDR Across Gain
Figure 19. Performance Across Input Amplitude,
Figure 21. Performance vs Input Common-Mode Voltage
Figure 23. SNR Across Temperature vs AVDD Supply, Sample Rate = 80 MSPS
Figure 27. Performance Across LVDD Supply
Figure 29. Performance Across Input Clock Duty Cycle,
Figure 31. Far-Channel Crosstalk Spectrum
Figure 33. Differential Non-Linearity
Figure 6. FFT for 15-MHz Input Signal, fS = 40 MSPS
Figure 8. FFT for 15-MHz Input Signal, fS = 80 MSPS
Figure 10. FFT for 3-MHz Input Signal, fS = 100 MSPS
Figure 12. FFT for 65-MHz Input Signal, fS = 100 MSPS
Figure 14. FFT for 2-Tone Input Signal
Figure 16. SNR vs Input Frequency
Figure 18. SNR Across Gain
Figure 22. SFDR Across Temperature vs AVDD Supply, Sample Rate = 80 MSPS
Figure 24. Performance Across LVDD Supply Voltage,
Figure 26. SNR Across Temperature
Figure 28. Performance Across Input Clock Amplitude, Sample Rate = 100 MSPS
Figure 30. Near-Channel Crosstalk Spectrum,
Figure 32. Integral Non-Linearity
Figure 35. FFT for 3-MHz Input Signal, fS = 100 MSPS
Figure 37. FFT for 65-MHz Input Signal, fS = 100 MSPS
Figure 36. FFT for 15-MHz Input Signal, fS = 100 MSPS
Figure 38. 16-Bit Digital Power Across Sampling Frequencies
Figure 42. SNR Contour Across Sampling and Input Frequencies, 14-Bit ADC
Figure 39. 14-Bit Digital Power Across Sampling Frequencies
Figure 43. SFDR Contour Across Sampling and Input Frequencies, 14-Bit ADC