SBAS659 November   2014 ADS58J89

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  Handling Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Electrical Characteristics
    6. 6.6  Electrical Characteristics: 250 MSPS Output, 2x Decimation Filter
    7. 6.7  Electrical Characteristics: 500 MSPS Output
    8. 6.8  Electrical Characteristics: Sample Clock Timing Characteristics
    9. 6.9  Electrical Characteristics: Digital Outputs
    10. 6.10 Timing Requirements
    11. 6.11 Reset Timing
    12. 6.12 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Decimation by 2 (250 MSPS Output)
      2. 7.3.2  Over-Range Indication
      3. 7.3.3  JESD204B Interface
        1. 7.3.3.1 JESD204B Initial Lane Alignment (ILA)
        2. 7.3.3.2 JESD204B Test Patterns
        3. 7.3.3.3 JESD204B Frame Assembly
      4. 7.3.4  SYSREF Clocking Schemes
      5. 7.3.5  Split-Mode Operation
      6. 7.3.6  Eye Diagram Information
      7. 7.3.7  Analog Inputs
      8. 7.3.8  Clock Inputs
      9. 7.3.9  Input Clock Divider
      10. 7.3.10 Power-Down Control
      11. 7.3.11 Device Configuration
      12. 7.3.12 JESD204B Interface Initialization Sequence
      13. 7.3.13 Device and Register Initialization
    4. 7.4 Device Functional Modes
      1. 7.4.1 Operating Modes
      2. 7.4.2 Mode Configuration
      3. 7.4.3 Output Format
      4. 7.4.4 Burst Mode of Every Other Sample (250 MSPS Output)
      5. 7.4.5 SNR Boost (500 MSPS Output)
      6. 7.4.6 Burst Mode
        1. 7.4.6.1 Burst Mode Counters
        2. 7.4.6.2 Burst Mode
        3. 7.4.6.3 TDD Burst Mode
        4. 7.4.6.4 Trigger Input
        5. 7.4.6.5 Manual Trigger Mode
        6. 7.4.6.6 Auto Trigger Mode
        7. 7.4.6.7 TDD-Burst Mode
          1. 7.4.6.7.1 TDD Burst Mode Examples
    5. 7.5 Programming
      1. 7.5.1 Serial Register Write
      2. 7.5.2 Serial Register Readout
    6. 7.6 Register Maps
      1. 7.6.1 Register Descriptions
        1. 7.6.1.1  Register Address 0
        2. 7.6.1.2  Register Address 1
        3. 7.6.1.3  Register Address 2
        4. 7.6.1.4  Register Address 3
        5. 7.6.1.5  Register Address 4
        6. 7.6.1.6  Register Address 5
        7. 7.6.1.7  Register Address 6
        8. 7.6.1.8  Register Address 7
        9. 7.6.1.9  Register Address 8
        10. 7.6.1.10 Register Address 12
        11. 7.6.1.11 Register Address 13
        12. 7.6.1.12 Register Address 14
        13. 7.6.1.13 Register Address 15
        14. 7.6.1.14 Register Address 16
        15. 7.6.1.15 Register Address 19
        16. 7.6.1.16 Register Address 22
        17. 7.6.1.17 Register Address 23
        18. 7.6.1.18 Register Address 26
        19. 7.6.1.19 Register Address 29
        20. 7.6.1.20 Register Address 30
        21. 7.6.1.21 Register Address 31
        22. 7.6.1.22 Register Address 32
        23. 7.6.1.23 Register Address 33
        24. 7.6.1.24 Address: 0x24, 0x25, 0x26, 0x27
        25. 7.6.1.25 Address: 0x28, 0x29, 0x2A, 0x2B
        26. 7.6.1.26 Register Address 44
        27. 7.6.1.27 Register Address 45
        28. 7.6.1.28 Register Address 46
        29. 7.6.1.29 Register Address 47
        30. 7.6.1.30 Address: 0x32, 0x33, 0x34, 0x35
        31. 7.6.1.31 Address: 0x36, 0x37, 0x38, 0x39
        32. 7.6.1.32 Register Address 58
        33. 7.6.1.33 Register Address 59
        34. 7.6.1.34 Register Address 60
        35. 7.6.1.35 Register Address 61
        36. 7.6.1.36 Register Address 99
        37. 7.6.1.37 Register Address 100
        38. 7.6.1.38 Register Address 103
        39. 7.6.1.39 Register Address 104
        40. 7.6.1.40 Register Address 107
        41. 7.6.1.41 Register Address 108
        42. 7.6.1.42 Register Address 111
  8. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 SNR and Clock Jitter
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
      1. 10.1.1 CML SerDes Transmitter Interface
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Trademarks
    2. 11.2 Electrostatic Discharge Caution
    3. 11.3 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

6 Specifications

6.1 Absolute Maximum Ratings

over operating free-air temperature (unless otherwise noted)(1)
MIN MAX UNIT
Supply voltage AVDD33 –0.3 3.6 V
AVDD18 –0.3 2.1
AVDDC –0.3 2.1
DVDD –0.3 2.1
IOVDD –0.3 2.1
PLLVDD –0.3 2.1
Voltage between AGND and DGND –0.3 0.3 V
Voltage applied to input pins INAP, INBP, INCP, INDP, INAM, INBM, INCM, INDM –0.3 3 V
CLKINP, CLKINM –0.3 AVDD18 + 0.3 V
SYNCbABP, SYNCbABM, SYNCbCDP, SYNCbCDM –0.3 AVDD18 + 0.3 V
SYSREFABP, SYSREFABM, SYSREFCDP, SYSREFCDM –0.3 AVDD18 + 0.3 V
SCLK, SDENb, SDATA, SRESETb, ENABLE –0.3 DVDD + 0.5 V
TA Operating free-air temperature –40 85 ºC
TJ Operating junction temperature(2) 125 ºC
(1) Stresses beyond those listed as absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated as recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) Prolonged use at this junction temperature may increase the device failure-in-time (FIT) rate.

6.2 Handling Ratings

MIN MAX UNIT
Tstg Storage temperature –65 150 °C
VESD Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1) –2 2 kV
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN NOM MAX UNIT
ADC clock frequency 250 500 MSPS
Resolution 14 14 bits
Supply AVDD33 3.15 3.3 3.45 V
AVDD18 1.8 1.9 2.0
AVDDC 1.7 1.8 1.9
DVDD 1.7 1.8 1.9
IOVDD 1.7 1.8 1.9
PLLVDD 1.7 1.8 1.9
TA Operating free-air temperature –40 85 °C
TJ Operating junction temperature 125 °C

6.4 Thermal Information

Thermal Metric(1) RGC (64 PINS) UNIT
RΘJA Junction-to-ambient thermal resistance 23.5 °C/W
RΘJC(top) Junction-to-case, top 7.0
RΘJB Junction-to-board thermal resistance 2.6
φJT Junction-to-top of package 0.1
φJB Junction-to-board characterization parameter 2.6
RΘJC(bot) Junction-to-case, bottom 0.3
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics

Typical values at TA = 25°C, full temperature range is TMIN = –40°C to TMAX = 85°C, ADC sampling rate = 500 MSPS, 50% clock duty cycle, AVDD33 = 3.3 V; AVDD18 = 1.9 V; AVDDC, DVDD, IOVDD, PLLVDD = 1.8 V, –1-dBFS differential input, unless otherwise noted.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
POWER SUPPLY
IAVDD33 3.3-V analog supply current 500 mA
IAVDD18 1.9-V analog supply current 320 mA
IAVDDC 1.8-V clock supply current 18 mA
IDVDD 1.8-V digital supply current 4-channel SNR boost 472 mA
4-channel decimation filter 323
4-channel burst mode 324
2-channel burst mode, 2-channel SNR boost 398
2-channel decimation filter, 2-channel burst mode 324
2-channel decimation filter, 2-channel, discard every other sample 289
IIOVDD I/O voltage supply current 2 lanes per ADC 373 mA
1 lane per ADC 185
IPLLVDD PLL voltage supply current 42 mA
Pdis Total power dissipation 4-channel SNR boost 3.94 W
4-channel Burst mode 3.67
4-channel decimation filter 3.34
4-channel decimation filter, 1 lane per ADC 3.27 3.5
2-channel SNR Boost, 2-channel burst mode 3.81
2-channel decimation filter, 2-channel burst mode 3.51
2-channel decimation filter, 2-channel, discard every other sample 3.28
Deep sleep mode power 791 mW
Wake-up time from deep sleep mode SNR > 60 dB 1.4 ms
Light sleep mode power 1.68 W
Wake-up time from light sleep mode SNR > 60 dB 8 µs
ANALOG INPUTS
Differential input full-scale 1.0 1.25 1.5 Vpp
Input common mode voltage Vcm ± 50 mV V
Input resistance Differential at DC 1
Input capacitance Each input to GND 2.75 pF
VCM Common mode voltage output 2.18 V
Analog input bandwidth (–3 dB) 900 MHz
CHANNEL-TO-CHANNEL ISOLATION
Crosstalk(1) Near channel ƒIN = 170 MHz 85 dB
Far channel ƒIN = 170 MHz 95
CLOCK INPUT
Input clock frequency 250 2000(2) MHz
Input clock amplitude 0.4 1.5 Vpp
Input clock duty cycle 45% 50% 55%
Internal clock biasing 0.9 V
(1) Crosstalk is measured with a –1-dBFS input signal on aggressor channel and no input on victim channel.
(2) CLK / 4 mode

6.6 Electrical Characteristics: 250 MSPS Output, 2x Decimation Filter

Typical values at TA = 25°C, full temperature range is TMIN = –40°C to TMAX = 85°C, ADC sampling rate = 500 MSPS, 50% clock duty cycle, AVDD33 = 3.3 V; AVDD18 = 1.9 V; AVDDC, DVDD, IOVDD, PLLVDD = 1.8 V, –1-dBFS differential input, unless otherwise noted.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
SNR Signal-to-noise ratio ƒIN = 10 MHz 68.3 dBFS
ƒIN = 100 MHz 68.2
ƒIN = 170 MHz 65 68.2
ƒIN = 310 MHz 67.6
ƒIN = 450 MHz 66.8
HD2 Second harmonic distortion ƒIN = 10 MHz 85 dBc
ƒIN = 100 MHz 85
ƒIN = 170 MHz 75 85
ƒIN = 310 MHz 85
ƒIN = 450 MHz 75
HD3 Third harmonic distortion ƒIN = 10 MHz 85 dBc
ƒIN = 100 MHz 85
ƒIN = 170 MHz 75 85
ƒIN = 310 MHz 85
ƒIN = 450 MHz 85
SFDR
(Non-HD2,
Non-HD3)
Spur free dynamic range
(excluding HD2 and HD3)
ƒIN = 10 MHz 95 dBc
ƒIN = 100 MHz 95
ƒIN = 170 MHz 75 95
ƒIN = 310 MHz 90
ƒIN = 450 MHz 85
IMD3 2F1-F2, 2F2-F1, Ain = –7 dBFS FIN = 169 and 171 MHz 93 dBFS

6.7 Electrical Characteristics: 500 MSPS Output

Typical values at TA = 25°C, full temperature range is TMIN = –40°C to TMAX = 85°C, ADC sampling rate = 500 MSPS, 50% clock duty cycle, AVDD33 = 3.3 V; AVDD18 = 1.9 V; AVDDC, DVDD, IOVDD, PLLVDD = 1.8 V, –1-dBFS differential input, unless otherwise noted.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
SNR Signal-to-Noise Ratio SNR Boost (150-MHz bandwidth) ƒIN = 100 MHz 65.7 dBFS
ƒIN = 170 MHz 65.7
ƒIN = 350 MHz 65
Burst Mode (14 bit) ƒIN = 10 MHz 65.3 dBFS
ƒIN = 100 MHz 65.2
ƒIN = 170 MHz 65.1
ƒIN = 370 MHz 64.7
ƒIN = 450 MHz 64.6
HD2 Second Harmonic Distortion ƒIN = 10 MHz 85 dBc
ƒIN = 100 MHz 85
ƒIN = 170 MHz 85
ƒIN = 370 MHz 75
ƒIN = 450 MHz 75
HD3 Third Harmonic Distortion ƒIN = 10 MHz 85 dBc
ƒIN = 100 MHz 85
ƒIN = 170 MHz 85
ƒIN = 370 MHz 78.3
ƒIN = 450 MHz 85
SFDR
(Non-HD2,
Non-HD3)
Spur Free Dynamic Range
(excluding HD2 and HD3)
ƒIN = 10 MHz 85 dBFS
ƒIN = 100 MHz 85
ƒIN = 170 MHz 85
ƒIN = 370 MHz 83
ƒIN = 450 MHz 83
IMD3 2F1-F2, 2F2-F1, Ain = –7 dBFS FIN = 169 and 171 MHz 87 dBFS

6.8 Electrical Characteristics: Sample Clock Timing Characteristics

Typical values at TA = 25°C, full temperature range is TMIN = –40°C to TMAX = 85°C, ADC sampling rate = 500 MSPS, 50% clock duty cycle, AVDD33 = 3.3 V; AVDD18 = 1.9 V; AVDDC, DVDD, IOVDD, PLLVDD = 1.8 V, –1 dBFS differential input, unless otherwise noted.
PARAMETER MIN TYP MAX UNIT
Aperture jitter, RMS 98 fs rms
Data latency 38 Sample clock cycles
Fast over-range (OVR) latency 6
tPDI Clock aperture delay 1.1 ns

6.9 Electrical Characteristics: Digital Outputs

The DC specifications refer to the condition where the digital outputs are not switching, but are permanently at a valid logic level 0 or 1. AVDD33 = 3.3 V; AVDD18 = 1.9 V; AVDDC, DVDD, IOVDD, PLLVDD = 1.8 V.
PARAMETER MIN TYP MAX UNIT
DIGITAL OUTPUTS: JESD204B INTERFACE
(DA[0,1], DB[0,1], DC[0,1], DD[0,1])
Output differential voltage, |VOD| 450 577 750 mV
Transmitter short circuit current Transmitter terminals shorted to any voltage between –0.25 and 1.45 V 45 mA
Single ended output impedance 50 Ω
Output capacitance Output capacitance inside the device, from either output to ground 2 pF
Unit interval, UI 5.0 Gbps 200 ps
Rise and fall times 110 ps
Output jitter 57 ps
Serial output data rate 5.0 Gbps

6.10 Timing Requirements

MIN TYP MAX UNIT
DIGITAL INPUTS:
SRESETb, SCLK, SDENb, SDATA, ENABLE, OVRA, OVRC, SYSREFCDP, SYSREFCDM
High-level input voltage All digital inputs support 1.8-V and 3.3-V logic levels 1.2 V
Low-level input voltage 0.4 V
High-level input current 50 µA
Low-level input current –50 µA
Input capacitance 4 pF
DIGITAL OUTPUTS:
SDOUT, OVRA, OVRB, OVRC, OVRD
High-level output voltage ILoad = –100 µA DVDD – 0.2 DVDD V
Low-level output voltage 0.2 V
DIGITAL INPUTS:
SYNCbABP/M, SYNCbCDP/M, SYSREFABP/M, SYSREFCDP/M
Input voltage VID 250 350 450 mV
Input common mode voltage VCM 0.4 0.9 1.4 V
tS_SYSREFxx Referenced to rising edge of input clock 100 ps
tH_SYSREFxx Referenced to rising edge of input clock 100 ps

6.11 Reset Timing

PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
t1 Power-on delay Delay from power up to active-low RESET pulse 3 ms
t2 Reset pulse duration Active-low RESET pulse duration 20 ns
t3 Register write delay Delay from RESET disable to SDENb active 100 ns
tim_DevReg_BAS659.gifFigure 1. Reset Timing Diagram
tim_250MSPS_SBAS659.gif
A. tPD is the propagation delay from sample clock input edge to serial data output transition
Figure 2. Timing Diagram: 250 MSPS Output Data Rate
tim_500MSPS_SBAS659.gif
A. tPD is the propagation delay from sample clock input edge to serial data output transition
Figure 3. Timing Diagram: 500 MSPS Output Data Rate
tim_SYSREF_SBAS659.gifFigure 4. Timing Using SYSREF (Subclass 1)
tim_ext_trig_SBAS659.gif
A. Trigger is allowed to be asynchronous to the sample clock. If the trigger input does not meet setup and hold timing around one clock cycle, then the trigger will be caught on the next cycle.
Figure 5. Timing for External Manual Trigger Input

6.12 Typical Characteristics

Typical values at TA = 25°C, full temperature range is TMIN = –40°C to TMAX = 85°C, Device clock frequency = 500 MHz, Output sample data rate = 5Gbps, 50% Device clock duty cycle, AVDD33 = 3.3 V, AVDD18 = 1.9 V, AVDDC = 1.8 V, IOVDD = 1.8 V, PLLVDD = 1.8 V, DVDD = 1.8 V, –1 dBFS differential input, unless otherwise noted, FFT sample size = 32768.
D001_SBAS659.gif
Fin = 10 MHz 1-lane 2x decimation Ain = –1 dBFS
SNR = 65.29 dBFS SFDR = 84.72 dBc
Figure 6. FFT 10 MHz
D003_SBAS659.gif
Fin = 170 MHz 1-lane 2x decimation Ain = –1 dBFS
SNR = 65.34 dBFS SFDR = 91.62 dBc
Figure 8. FFT 170 MHz
D006_SBAS659.gif
1-lane 2x decimation Ain = –1 dBFS
Figure 10. SFDR vs Frequency
D008_SBAS659.gif
1-lane 2x decimation Fin = –170 MHz
Figure 12. SFDR vs. Amplitude
D010_SBAS659.gif
1-lane 2x decimation Fin = –170 MHz
Figure 14. SFDR vs. VCM
D012_SBAS659.gif
1-lane 2x decimation Ain = –1 dBFS
Figure 16. SFDR vs. VREF
D014_SBAS659.gif
1-lane 2x decimation Ain = –1 dBFS Fin = 170 MHz
Figure 18. SFDR vs. AVDD18
D016_SBAS659.gif
1-lane 2x decimation Ain = –1 dBFS Fin = 170 MHz
Figure 20. SFDR vs. AVDD33
D018_SBAS659.gif
1-lane 2x decimation Ain = –1 dBFS Fin = 170 MHz
Figure 22. SFDR vs. PLLVDD
D020_SBAS659.gif
1-lane 2x decimation Ain = –1 dBFS Fin = 170 MHz
Figure 24. SFDR vs. Clock Amplitude
D005_SBAS659.gif
Fin = 170 MHz 1-MHz spacing 1-lane 2x decimation
Ain = –7 dBFS 60 to 100 MHz shown
Figure 26. 2-Tone FFT
D023_SBAS659.gif
1-lane 2x decimation Ain = –1 dBFS Fin = 170 MHz
Figure 28. Crosstalk by Channel
D025_SBAS659.gif
2-lane burst mode Ain = –1 dBFS
Figure 30. Burst Mode SFDR vs. Frequency
D027_SBAS659.gif
2-lane burst mode Ain = –1 dBFS Fin = 170 MHz
Figure 32. Burst Mode Crosstalk by Channel
D029_SBAS659.gif
2-lane SNR boost mode Ain = –1 dBFS
Blackman-Harris filter
Figure 34. SNR Boost SFDR vs. Frequency
D031_SBAS659.gif
2-lane SNR boost mode Ain = –1 dBFS Fin = 170 MHz
Figure 36. SNR Boost Crosstalk by Channel
D002_SBAS659.gif
Fin = 100 MHz 1-lane 2x decimation Ain = –1 dBFS
SNR = 65.40 dBFS SFDR = 82.50 dBc
Figure 7. FFT 100 MHz
D004_SBAS659.gif
Fin = 230 MHz 1-lane 2x decimation Ain = –1 dBFS
SNR = 65.16 dBFS SFDR = 76.83 dBc
Figure 9. FFT 230 MHz
D007_SBAS659.gif
1-lane 2x decimation Ain = –1 dBFS
Figure 11. SNR vs. Frequency
D009_SBAS659.gif
1-lane 2x decimation Fin = –170 MHz
Figure 13. SNR vs. Amplitude
D011_SBAS659.gif
1-lane 2x decimation Fin = –170 MHz
Figure 15. SNR vs VCM
D013_SBAS659.gif
1-lane 2x decimation Ain = –1 dBFS
Figure 17. SNR vs. VREF
D015_SBAS659.gif
1-lane 2x decimation Ain = –1 dBFS Fin = 170 MHz
Figure 19. SNR vs. AVDD18
D017_SBAS659.gif
1-lane 2x decimation Ain = –1 dBFS Fin = 170 MHz
Figure 21. SNR vs. AVDD33
D019_SBAS659.gif
1-lane 2x decimation Ain = –1 dBFS Fin = 170 MHz
Figure 23. SNR vs PLLVDD
D021_SBAS659.gif
1-lane 2x decimation Ain = –1 dBFS Fin = 170 MHz
Figure 25. SNR vs. Clock Amplitude
D022_SBAS659.gif
AVDD18 = 1.9 V AVDD33 = 3.3 V Other supplies = 1.8 V
Ain = –1 dBFS Fin = 170 MHz
Figure 27. Power vs. Sample Frequency
D024_SBAS659.gif
2-lane burst mode Ain = –1 dBFS Fin = 170 MHz
SNR = 65.26 dBFS SFDR = 90.42 dBc
Figure 29. Burst Mode FFT 170 MHz
D026_SBAS659.gif
2-lane burst mode Ain = –1 dBFS
Figure 31. Burst Mode SNR vs Frequency
D028_SBAS659.gif
2-lane SNR boost mode Ain = –1 dBFS Fin = 170 MHz
Blackman-Harris filter
Figure 33. SNRBoost FFT 170MHz
D030_SBAS659.gif
2-lane SNR boost mode Ain = –1 dBFS
Blackman-Harris filter
Figure 35. SNR Boost SNR vs Frequency

SNR_contour_plot.jpg
Figure 37. SNR Contour Plot
SFDR_contour_plot.jpg
Figure 38. SFDR Contour Plot