SCAS759C April   2004  – July 2017 CDCM1802

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Electrical Characteristics
    6. 6.6  Switching Characteristics
    7. 6.7  Jitter Characteristics
    8. 6.8  Supply Current Electrical Characteristics
    9. 6.9  Control Input Characteristics
    10. 6.10 Timing Requirements
    11. 6.11 Bias Voltage VBB
    12. 6.12 Typical Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
    4. 8.4 Device Functional Modes
      1. 8.4.1 Control Pin Settings
      2. 8.4.2 Device Behavior During RESET and Control Pin Switching
        1. 8.4.2.1 Output Behavior When Enabling the Device (EN = 0 → 1)
        2. 8.4.2.2 Enabling a Single Output Stage
  9. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 LVPECL Receiver Input Termination
      2. 9.1.2 LVCMOS Receiver Input Termination
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
      3. 9.2.3 Application Curve
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
    3. 11.3 Thermal Considerations
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Third-Party Products Disclaimer
    2. 12.2 Documentation Support
      1. 12.2.1 Related Documentation
    3. 12.3 Community Resources
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Specifications

Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)
MIN MAX UNIT
VDD Supply voltage –0.3 3.8 V
VI Input voltage –0.2 (VDD + 0.2) V
VO Output voltage –0.2 (VDD + 0.2) V
Yn, Yn, IOSD Differential short circuit current Continuous
TJ Maximum junction temperature 125 125 °C
Tstg Storage temperature −65 150 °C
Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±3000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±1500
JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN NOM MAX UNIT
VDD Supply voltage 3 3.3 3.6 V
VDD Supply voltage (only functionality) 2.375 3.6 V
TA Operating free-air temperature –40 85 °C

Thermal Information

THERMAL METRIC(1) CDCM1802 UNIT
RGT (VQFN)
16 PINS
RθJA Junction-to-ambient thermal resistance 48.4 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 66.9 °C/W
RθJB Junction-to-board thermal resistance 22.5 °C/W
ψJT Junction-to-top characterization parameter 1.7 °C/W
ψJB Junction-to-board characterization parameter 22.5 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance 5.8 °C/W
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.

Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
LVPECL INPUT IN, IN
fclk Input frequency 0 800 MHz
VCM High-level input common mode 1 VDD − 0.3 V
VIN Input voltage swing between IN and IN See (1) 500 1300 mV
See (2) 150 1300
IIN Input current VI = VDD or 0 V ±10 µA
RIN Input impedance 300
CI Input capacitance at IN, IN 1 pF
LVPECL OUTPUT DRIVER Y0, Y0
fclk Output frequency (see Figure 3) 0 800 MHz
VOH High-level output voltage Termination with 50 Ω to VDD − 2 V VDD − 1.18 VDD – 0.81 V
VOL Low-level output voltage Termination with 50 Ω to VDD − 2 V VDD − 1.98 VDD – 1.55 V
VO Output voltage swing between Y and Y (see Figure 3) Termination with 50 Ω to VDD − 2 V 500 mV
IOZL Output 3-state VDD = 3.6 V, VO = 0 V 5 µA
IOZH VDD = 3.6 V, VO = VDD – 0.8 V 10 µA
CO Output capacitance VO = VDD or GND 1 pF
LOAD Expected output load 50 Ω
LVCMOS OUTPUT PARAMETER, Y1
fclk Output frequency(4) (see Figure 4) 0 200 MHz
VOH High-level output voltage VDD = min to max, IOH = −100 µA VDD – 0.1 V
VDD = 3 V, IOH = −6 mA 2.4
VDD = 3 V, IOH = −12 mA 2
VOL Low-level output voltage VDD = min to max, IOL = 100 µA 0.1 V
VDD = 3 V, IOL = 6 mA 0.5
VDD = 3 V, IOL = 12 mA 0.8
IOH High-level output current VDD = 3.3 V, VO = 1.65 V −29 mA
IOL Low-level output current VDD = 3.3 V, VO = 1.65 V 37 mA
IOZ High-impedance state output current VDD = 3.6 V, VO = VDD or 0 V ±5 µA
CO Output capacitance VDD = 3.3 V 2 pF
Load Expected output loading (see Figure 9) 10 pF
Required to maintain AC specifications
Required to maintain device functionality
For a 800-MHz signal, the 50-ps error would result into a duty cycle distortion of ±4% when driven by an ideal clock input signal.
Operating the CDCM1802 LVCMOS output above the maximum frequency will not cause a malfunction to the device, but the Y1 output signal swing will not achieve enough signal swing to meet the output specification. Therefore, the CDCM1802 can be operated at higher frequencies, while the LVCMOS output Y1 becomes unusable.
For a 200-MHz signal, the 150-ps error would result in a duty cycle distortion of ±3% when driven by an ideal clock input signal.

Switching Characteristics

over operating free-air temperature range (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
LVPECL OUTPUT DRIVER Y0, Y0
tDuty Output duty cycle distortion(3) Crossing point-to-crossing point distortion −50 50 ps
tsk(pp) Part-to-part skew Any Y0 (see Note A in Figure 7) 50 ps
tr/tf Rise and fall time 20% to 80% of VOUTPP
(see Figure 8)
200 350 ps
LVPECL INPUT-TO-LVPECL OUTPUT PARAMETER
tpd(lh) Propagation delay rising edge VOX to VOX 320 600 ps
tpd(hl) Propagation delay falling edge VOX to VOX 320 600 ps
tsk(p) LVPECL pulse skew
(see Note B in Figure 7)
VOX to VOX 100 ps
LVCMOS OUTPUT PARAMETER, Y1
tskLVCMOS(o) Output skew between the LVCMOS output Y1 and LVPECL output Y0 VOX to VDD / 2 (see Figure 7) 1.6 ns
tDuty Output duty cycle distortion(5) Measured at VDD / 2 −150 150 ps
tsk(pp) Part-to-part skew Y1 (see Note A in Figure 7) 300 ps
tpd(lh) Propagation delay rising edge from IN to Y1 VOX to VDD / 2 load (see Figure 9) 1.6 2.6 ns
tpd(hl) Propagation delay falling edge from IN to Y1 VOX to VDD / 2 load (see Figure 9) 1.6 2.6 ns
tr Output rise slew rate 20% to 80% of swing
(see Figure 9)
1.4 2.3 V/ns
tf Output fall slew rate 80% to 20% of swing
(see Figure 9)
1.4 2.3 V/ns

Jitter Characteristics

over operating free-air temperature range (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
tjitterLVPECL Additive phase jitter from input to LVPECL output Y0
(see Figure 1)
12 kHz to 20 MHz, fout = 250 MHz to 800 MHz, divide by 1 mode 0.15 ps rms
50 kHz to 40 MHz, fout = 250 MHz to 800 MHz, divide by 1 mode 0.25 ps rms
tjitterLVCMOS Additive phase jitter from input to LVCMOS output Y1
(see Figure 2)
12 kHz to 20 MHz, fout = 250 MHz, divide by 1 mode 0.25 ps rms
50 kHz to 40 MHz, fout = 250 MHz, divide by 1 mode 0.4 ps rms

Supply Current Electrical Characteristics

over recommended operating free-air temperature range (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
IDD Supply current Full load All outputs enabled and terminated with 50 Ω to VDD − 2 V on LVPECL outputs and 10 pF on LVCMOS output,
f = 800 MHz for LVPECL outputs and 200 MHz for LVCMOS,
VDD = 3.3 V
100 mA
No load Outputs enabled, no output load, f = 800 MHz for LVPECL outputs and 200 MHz for LVCMOS, VDD = 3.6 V 85 mA
IDDZ Supply current, 3-state All outputs 3-state by control logic, f = 0 Hz, VDD = 3.6 V 0.5 mA

Control Input Characteristics

over operating free-air temperature range (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
Rpullup Internal pullup resistor on S0, S1, and EN input 42 60 78
VIH(H) Three level input high, S0, S1, and EN pin(1) 0.9 × VDD V
VIM(M) Three level input MID, S0, S1, and EN pin 0.3 × VDD 0.7 × VDD V
VIL(L) Three level low, S0, S1, and EN pin 0.1 × VDD V
IIH Input current, S0, S1, and EN pin VI = VDD –5 µA
IIL Input current, S0, S1, and EN pin VI = GND 38 85 µA
Leaving this pin floating automatically pulse the logic level high to VDD through an internal pullup resistor of 60 kΩ.

Timing Requirements

MIN NOM MAX UNIT
tsu Setup time, S0, S1, and EN pin before clock IN 25 ns
th Hold time, S0, S1, and EN pin after clock IN 0 ns
t(disable) Time between latching the EN low transition and when all outputs are disabled (how much time is required until the outputs turn off) 10 ns
t(enable) Time between latching the EN low-to-high transition and when outputs are enabled based on control settings (how much time passes before the outputs carry valid signals) 1 μs

Bias Voltage VBB

over operating free-air temperature range (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
VBB Output reference voltage VDD = 3 V–3.6 V, IBB = –0.2 mA VDD – 1.4 VDD – 1.2 V

Typical Characteristics

CDCM1802 scas697_g001.gif
Figure 1. Additive Phase Noise vs
Frequency Offset From Carrier − LVPECL
CDCM1802 scas697_g003.gif
Figure 3. Amplitude PECL Peak-to-Peak vs Frequency
CDCM1802 D001_SCAS759.gif
Figure 5. Supply current vs Frequency
CDCM1802 scas697_g002.gif
Figure 2. Additive Phase Noise vs
Frequency Offset From Carrier − LVCMOS
CDCM1802 scas697_g004.gif
Figure 4. Amplitude CMOS Peak-to-Peak vs Frequency
CDCM1802 scas697_g006.gif
Figure 6. Output Reference Voltage (VBB) vs Load