SNVS124E November   1999  – February 2020 LM2596


  1. Features
  2. Applications
  3. Description
    1.     Device Images
      1.      Typical Application
  4. Revision History
  5. Description (continued)
  6. Pin Configuration and Functions
    1.     Pin Functions
  7. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  ESD Ratings
    3. 7.3  Operating Conditions
    4. 7.4  Thermal Information
    5. 7.5  Electrical Characteristics – 3.3-V Version
    6. 7.6  Electrical Characteristics – 5-V Version
    7. 7.7  Electrical Characteristics – 12-V Version
    8. 7.8  Electrical Characteristics – Adjustable Voltage Version
    9. 7.9  Electrical Characteristics – All Output Voltage Versions
    10. 7.10 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Delayed Start-Up
      2. 8.3.2 Undervoltage Lockout
      3. 8.3.3 Inverting Regulator
      4. 8.3.4 Inverting Regulator Shutdown Methods
    4. 8.4 Device Functional Modes
      1. 8.4.1 Discontinuous Mode Operation
  9. Application and Implementation
    1. 9.1 Application Information
      1. 9.1.1 Input Capacitor (CIN)
      2. 9.1.2 Feedforward Capacitor (CFF)
      3. 9.1.3 Output Capacitor (COUT)
      4. 9.1.4 Catch Diode
      5. 9.1.5 Inductor Selection
      6. 9.1.6 Output Voltage Ripple and Transients
      7. 9.1.7 Open-Core Inductors
    2. 9.2 Typical Applications
      1. 9.2.1 LM2596 Fixed Output Series Buck Regulator
        1. Design Requirements
        2. Detailed Design Procedure
          1. Custom Design with WEBENCH Tools
          2. Inductor Selection (L1)
          3. Output Capacitor Selection (COUT)
          4. Catch Diode Selection (D1)
          5. Input Capacitor (CIN)
        3. Application Curves
      2. 9.2.2 LM2596 Adjustable Output Series Buck Regulator
        1. Design Requirements
        2. Detailed Design Procedure
          1. Programming Output Voltage
          2. Inductor Selection (L1)
          3. Output Capacitor Selection (COUT)
          4. Feedforward Capacitor (CFF)
          5. Catch Diode Selection (D1)
          6. Input Capacitor (CIN)
        3. Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Examples
    3. 11.3 Thermal Considerations
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Custom Design with WEBENCH Tools
    2. 12.2 Receiving Notification of Documentation Updates
    3. 12.3 Support Resources
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • NDH|5
  • NEB|5
  • KTT|5
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Input Capacitor (CIN)

A low ESR aluminum or tantalum bypass capacitor is required between the input pin and ground pin. It must be placed near the regulator using short leads. This capacitor prevents large voltage transients from occuring at the input, and provides the instantaneous current required each time the switch turns ON.

The important parameters for the input capacitor are the voltage rating and the RMS current rating. Because of the relatively high RMS currents flowing in a input capacitor of the buck converter, this capacitor must be chosen for its RMS current rating rather than its capacitance or voltage ratings, although the capacitance value and voltage rating are directly related to the RMS current rating.

The RMS current rating of a capacitor could be viewed as a power rating of the capacitor. The RMS current flowing through the capacitors internal ESR produces power which causes the internal temperature of the capacitor to rise. The RMS current rating of a capacitor is determined by the amount of current required to raise the internal temperature approximately 10°C above an ambient temperature of 105°C. The ability of the capacitor to dissipate this heat to the surrounding air will determine the amount of current the capacitor can safely sustain. For a given capacitor value, a higher voltage electrolytic capacitor is physically larger than a lower voltage capacitor, and thus be able to dissipate more heat to the surrounding air, and therefore will have a higher RMS current rating.

The consequences of operating an electrolytic capacitor above the RMS current rating is a shortened operating life. The higher temperature speeds up the evaporation of the capacitor's electrolyte, resulting in eventual failure.

Selecting an input capacitor requires consulting the manufacturers data sheet for maximum allowable RMS ripple current. For a maximum ambient temperature of 40°C, a general guideline would be to select a capacitor with a ripple current rating of approximately 50% of the DC load current. For ambient temperatures up to 70°C, a current rating of 75% of the DC load current would be a good choice for a conservative design. The capacitor voltage rating must be at least 1.25 times greater than the maximum input voltage, and often a much higher voltage capacitor is required to satisfy the RMS current requirements.

Figure 23 shows the relationship between an electrolytic capacitor value, its voltage rating, and the RMS current it is rated for. These curves were obtained from the Nichicon PL series of low-ESR, high-reliability electrolytic capacitors designed for switching regulator applications. Other capacitor manufacturers offer similar types of capacitors, but always check the capacitor data sheet.

Standard electrolytic capacitors typically have much higher ESR numbers, lower RMS current ratings and typically have a shorter operating lifetime.

Because of their small size and excellent performance, surface-mount solid tantalum capacitors are often used for input bypassing, but several precautions must be observed. A small percentage of solid tantalum capacitors can short if the inrush current rating is exceeded. This can happen at turnon when the input voltage is suddenly applied, and of course, higher input voltages produce higher inrush currents. Several capacitor manufacturers do a 100% surge current testing on their products to minimize this potential problem. If high turnon currents are expected, it may be necessary to limit this current by adding either some resistance or inductance before the tantalum capacitor, or select a higher voltage capacitor. As with aluminum electrolytic capacitors, the RMS ripple current rating must be sized to the load current.