SNVS615K January   2010  – February 2018 LM27402

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Device Images
      1.      Typical Application Circuit
  4. Revision History
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Requirements
    7. 6.7 Switching Characteristics
    8. 6.8 Typical Performance Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Wide Input Voltage Range
      2. 7.3.2  UVLO
      3. 7.3.3  Precision Enable
      4. 7.3.4  Soft-Start and Voltage Tracking
      5. 7.3.5  Output Voltage Setpoint and Accuracy
      6. 7.3.6  Voltage-Mode Control
      7. 7.3.7  Power Good
      8. 7.3.8  Inductor-DCR-Based Overcurrent Protection
      9. 7.3.9  Current Sensing
      10. 7.3.10 Power MOSFET Gate Drivers
      11. 7.3.11 Pre-Bias Start-up
    4. 7.4 Device Functional Modes
      1. 7.4.1 Fault Conditions
        1. 7.4.1.1 Thermal Protection
        2. 7.4.1.2 Current Limit
        3. 7.4.1.3 Negative Current Limit
        4. 7.4.1.4 Undervoltage Threshold (UVT)
        5. 7.4.1.5 Overvoltage Threshold (OVT)
  8. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1  Converter Design
      2. 8.1.2  Inductor Selection (L)
      3. 8.1.3  Output Capacitor Selection (COUT)
      4. 8.1.4  Input Capacitor Selection (CIN)
      5. 8.1.5  Using Precision Enable
      6. 8.1.6  Setting the Soft-Start Time
      7. 8.1.7  Tracking
      8. 8.1.8  Setting the Switching Frequency
      9. 8.1.9  Setting the Current Limit Threshold
      10. 8.1.10 Control Loop Compensation
      11. 8.1.11 MOSFET Gate Drivers
      12. 8.1.12 Power Loss and Efficiency Calculations
        1. 8.1.12.1 Power MOSFETs
        2. 8.1.12.2 High-Side Power MOSFET
        3. 8.1.12.3 Low-Side Power MOSFET
        4. 8.1.12.4 Gate-Charge Loss
        5. 8.1.12.5 Input and Output Capacitor ESR Losses
        6. 8.1.12.6 Inductor Losses
        7. 8.1.12.7 Controller Losses
        8. 8.1.12.8 Overall Efficiency
    2. 8.2 Typical Applications
      1. 8.2.1 Example Circuit 1
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
          1. 8.2.1.2.1 Custom Design With WEBENCH® Tools
        3. 8.2.1.3 Application Curves
      2. 8.2.2 Example Circuit 2
      3. 8.2.3 Example Circuit 3
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
      1. 10.1.1 Power Stage Layout
      2. 10.1.2 Gate Drive Layout
      3. 10.1.3 Controller Layout
      4. 10.1.4 Thermal Design and Layout
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Third-Party Products Disclaimer
      2. 11.1.2 Development Support
        1. 11.1.2.1 Custom Design With WEBENCH® Tools
    2. 11.2 Documentation Support
      1. 11.2.1 Related Documentation
    3. 11.3 Receiving Notification of Documentation Updates
    4. 11.4 Community Resources
    5. 11.5 Trademarks
    6. 11.6 Electrostatic Discharge Caution
    7. 11.7 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Current Sensing

As mentioned, the LM27402 implements a lossless inductor DCR lossless current sense scheme designed to provide both accurate overload (current limit) and short-circuit protection. Figure 22 shows the popular inductor DCR current sense method. Figure 23 shows an implementation with current shunt resistor, RISNS.

Components RS and CS in Figure 22 create a low-pass filter across the inductor to enable differential sensing of the inductor DCR voltage drop. When RSCS is equal to L/RDCR, the voltage developed across the sense capacitor, CS, is a replica of the voltage waveform of the inductor DCR. Choose the capacitance of CS greater than 0.1 µF to maintain low impedance of the sense network, thus reducing the susceptibility of noise pickup from the switch node.

LM27402 DCR_current_sense_nvs615.gifFigure 22. Current Sensing Using Inductor DCR
LM27402 shunt_current_sense_nvs615.gifFigure 23. Current Sensing Using Shunt Resistor

Note that the inductor DCR is shown schematically as a discrete element in Figure 22. With power inductors selected to provide lowest possible DCR to minimize power losses, the typical DCR ranges from 0.4 mΩ to
4 mΩ. Then, given a load current of 25 A, the voltage presented across the CS+ and CS– pins ranges between 10 mV and 100 mV.

A current sense (or current shunt) resistor in series with the inductor can also be implemented at lower output current levels to provide accurate overcurrent protection, see Figure 23. Burdened by the unavoidable efficiency penalty and/or additional cost implications, this configuration is not usually implemented in high-current applications (except where OCP setpoint accuracy and stability over the operating temperature range are critical specifications).