SLAS697E March   2010  – November 2016 MSP430F2619S-HT

PRODUCTION DATA.  

  1. 1Device Overview
    1. 1.1 Features
    2. 1.2 Applications
    3. 1.3 Description
    4. 1.4 Functional Block Diagram
  2. 2Revision History
  3. 3Terminal Configurations and Functions
    1. 3.1 Pin Diagram
    2. 3.2 Pin Attributes
    3. 3.3 Bare Die Information
  4. 4Specifications
    1. 4.1  Absolute Maximum Ratings
    2. 4.2  ESD Ratings
    3. 4.3  Recommended Operating Conditions
    4. 4.4  Thermal Information
    5. 4.5  Active-Mode Supply Current Into AVCC Excluding External Current - Electrical Characteristics
    6. 4.6  Typical Characteristics - Active-Mode Supply Current (Into DVCC + AVCC)
    7. 4.7  Active-Mode Current vs DCO Frequency
    8. 4.8  Low-Power-Mode Supply Currents Into AVCC Excluding External Current - Electrical Characteristics
    9. 4.9  Typical Characteristics - LPM4 Current
    10. 4.10 Schmitt-Trigger Inputs (Ports P1 Through P6, and RST/NMI, JTAG, XIN, and XT2IN) - Electrical Characteristics
    11. 4.11 Inputs (Ports P1 and P2) - Electrical Characteristics
    12. 4.12 Leakage Current (Ports P1 Through P6) - Electrical Characteristics
    13. 4.13 Standard Inputs - RST/NMI - Electrical Characteristics
    14. 4.14 Outputs (Ports P1 Through P6) - Electrical Characteristics
    15. 4.15 Output Frequency (Ports P1 Through P6) - Electrical Characteristics
    16. 4.16 Typical Characteristics - Outputs
    17. 4.17 POR/Brownout Reset (BOR) - Electrical Characteristics
    18. 4.18 Typical Characteristics - POR/Brownout Reset (BOR)
    19. 4.19 SVS (Supply Voltage Supervisor/Monitor) - Electrical Characteristics
    20. 4.20 Typical Characteristics - SVS
    21. 4.21 Main DCO Characteristics
    22. 4.22 DCO Frequency - Electrical Characteristics
    23. 4.23 Calibrated DCO Frequencies (Tolerance at Calibration) - Electrical Characteristics
    24. 4.24 Calibrated DCO Frequencies (Tolerance Over Temperature) - Electrical Characteristics
    25. 4.25 Calibrated DCO Frequencies (Tolerance Over Supply Voltage VCC) - Electrical Characteristics
    26. 4.26 Calibrated DCO Frequencies (Overall Tolerance) - Electrical Characteristics
    27. 4.27 Typical Characteristics - Calibrated DCO Frequency
    28. 4.28 Wake-Up From Low-Power Modes (LPM3/4) - Electrical Characteristics
    29. 4.29 Typical Characteristics - DCO Clock Wake-Up Time From LPM3/4
    30. 4.30 DCO With External Resistor ROSC - Electrical Characteristics
    31. 4.31 Typical Characteristics - DCO With External Resistor ROSC
    32. 4.32 Crystal Oscillator (LFXT1) Low-Frequency Modes - Electrical Characteristics
    33. 4.33 Internal Very-Low-Power, Low-Frequency Oscillator (VLO) - Electrical Characteristics
    34. 4.34 Crystal Oscillator (LFXT1) High Frequency Modes - Electrical Characteristics
    35. 4.35 Typical Characteristics - LFXT1 Oscillator in HF Mode (XTS = 1)
    36. 4.36 Crystal Oscillator (XT2) - Electrical Characteristics
    37. 4.37 Typical Characteristics - XT2 Oscillator
    38. 4.38 Timer_A - Electrical Characteristics
    39. 4.39 Timer_B - Electrical Characteristics
    40. 4.40 USCI (UART Mode) - Electrical Characteristics
    41. 4.41 USCI (SPI Master Mode) - Electrical Characteristics
    42. 4.42 USCI (SPI Slave Mode) - Electrical Characteristics
    43. 4.43 USCI (I2C Mode) - Electrical Characteristics
    44. 4.44 Comparator_A+ - Electrical Characteristics
    45. 4.45 Typical Characteristics - Comparator A+
    46. 4.46 12-Bit ADC Power-Supply and Input Range Conditions - Electrical Characteristics
    47. 4.47 12-Bit ADC External Reference - Electrical Characteristics
    48. 4.48 12-Bit ADC Built-In Reference - Electrical Characteristics
    49. 4.49 Typical Characteristics - ADC12
    50. 4.50 12-Bit ADC Timing Parameters - Electrical Characteristics
    51. 4.51 12-Bit ADC Linearity Parameters - Electrical Characteristics
    52. 4.52 12-Bit ADC Temperature Sensor and Built-In VMID - Electrical Characteristics
    53. 4.53 12-Bit DAC Supply Specifications - Electrical Characteristics
    54. 4.54 12-Bit DAC Linearity Parameters - Electrical Characteristics
    55. 4.55 Typical Characteristics - 12-Bit DAC Linearity Specifications
    56. 4.56 12-Bit DAC Output Specifications - Electrical Characteristics
    57. 4.57 12-Bit DAC Reference Input Specifications - Electrical Characteristics
    58. 4.58 12-Bit DAC Dynamic Specifications, VREF = VCC, DAC12IR = 1 - Electrical Characteristics
    59. 4.59 Flash Memory - Electrical Characteristics
    60. 4.60 RAM - Electrical Characteristics
    61. 4.61 JTAG and Spy-Bi-Wire Interface - Electrical Characteristics
    62. 4.62 JTAG Fuse - Electrical Characteristics
  5. 5Detailed Description
    1. 5.1  CPU
    2. 5.2  Instruction Set
    3. 5.3  Operating Modes
    4. 5.4  Interrupt Vector Addresses
    5. 5.5  Special Function Registers
      1. 5.5.1 Interrupt Enable 1 and 2
      2. 5.5.2 Interrupt Flag Register 1 and 2
    6. 5.6  Memory Organization
    7. 5.7  Bootstrap Loader (BSL)
    8. 5.8  Flash Memory
    9. 5.9  Peripherals
    10. 5.10 DMA Controller
    11. 5.11 Oscillator and System Clock
    12. 5.12 Brownout, Supply Voltage Supervisor (SVS)
    13. 5.13 Digital I/O
    14. 5.14 WDT+ Watchdog Timer
    15. 5.15 Hardware Multiplier
    16. 5.16 USCI
    17. 5.17 Timer_A3
    18. 5.18 Timer_B7
    19. 5.19 Comparator_A+
    20. 5.20 ADC12
    21. 5.21 DAC12
    22. 5.22 Peripheral File Map
  6. 6Applications, Implementation, and Layout
    1. 6.1  P1.0 to P1.7, Input/Output With Schmitt Trigger
    2. 6.2  P2.0 to P2.4, P2.6, and P2.7, Input/Output With Schmitt Trigger
    3. 6.3  P2.5, Input/Output With Schmitt Trigger and External ROSC for DCO
    4. 6.4  Port P3 Pin Schematic: P3.0 to P3.7, Input/Output With Schmitt Trigger
    5. 6.5  Port P4 Pin Schematic: P4.0 to P4.7, Input/Output With Schmitt Trigger
    6. 6.6  Port P5 Pin Schematic: P5.0 to P5.7, Input/Output With Schmitt Trigger
    7. 6.7  Port P6 Pin Schematic: P6.0 to P6.4, Input/Output With Schmitt Trigger
    8. 6.8  Port P6 Pin Schematic: P6.5 and P6.6, Input/Output With Schmitt Trigger
    9. 6.9  Port P6 Pin Schematic: P6.7, Input/Output With Schmitt Trigger
    10. 6.10 Port P7 Pin Schematic: P7.0 to P7.7, Input/Output With Schmitt Trigger
    11. 6.11 Port P8 Pin Schematic: P8.0 to P8.5, Input/Output With Schmitt Trigger
    12. 6.12 Port P8 Pin Schematic: P8.6, Input/Output With Schmitt Trigger
    13. 6.13 Port P8 Pin Schematic: P8.7, Input/Output With Schmitt Trigger
    14. 6.14 JTAG Pins: TMS, TCK, TDI/TCLK, TDO/TDI, Input/Output With Schmitt Trigger
    15. 6.15 JTAG Fuse Check Mode
  7. 7Device and Documentation Support
    1. 7.1 Development Tool Support
    2. 7.2 Receiving Notification of Documentation Updates
    3. 7.3 Community Resources
    4. 7.4 Trademarks
    5. 7.5 Electrostatic Discharge Caution
    6. 7.6 Glossary
  8. 8Mechanical, Packaging, and Orderable Information
    1. 8.1 Packaging Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Applications, Implementation, and Layout

P1.0 to P1.7, Input/Output With Schmitt Trigger

MSP430F2619S-HT Port_P1_las697.gif Figure 6-1 Port P1 (P1.0 to P1.7) Pin Schematic

Table 6-1 Port P1 (P1.0 to P1.7) Pin Functions

PIN NAME (P1.X) X FUNCTION CONTROL BITS/SIGNALS
P1DIR.x P1SEL.x
P1.0/TACLK/ADC10CLK 0 P1.0 I: 0; O: 1 0
Timer_A3.TACLK 0 1
ADC10CLK 1 1
P1.1/TA0 1 P1.1 (I/O) I: 0; O: 1 0
Timer_A3.CCI0A 0 1
Timer_A3.TA0 1 1
P1.2/TA1 2 P1.2 (I/O) I: 0; O: 1 0
Timer_A3.CCI0A 0 1
Timer_A3.TA0 1 1
P1.3/TA2 3 P1.3 I/O I: 0; O: 1 0
Timer_A3.CCI0A 0 1
Timer_A3.TA0 1 1
P1.4/SMCLK 4 P1.4 (I/O) I: 0; O: 1 0
SMCLK 1 1
P1.5/TA0 5 P1.5 (I/O) I: 0; O: 1 0
Timer_A3.TA0 1 1
P1.6/TA1 6 P1.6 (I/O) I: 0; O: 1 0
Timer_A3.TA1 1 1
P1.7/TA2 7 P1.7 (I/O) I: 0; O: 1 0
Timer_A3.TA2 1 1

P2.0 to P2.4, P2.6, and P2.7, Input/Output With Schmitt Trigger

MSP430F2619S-HT Port_P2_las697.gif Figure 6-2 Port P2.0, P2.3, P2.4, P2.6 and P2.7 Pin Schematic

Table 6-2 Port P2.0, P2.3, P2.4, P2.6 and P2.7 Pin Functions

Pin Name (P2.X) X FUNCTION CONTROL BITS/SIGNALS(1)
CAPD.x P2DIR.x P2SEL.x
P2.0/ACLK/CA2 0 P2.0 (I/O) 0 I: 0; O: 1 0
ACLK 0 1 1
CA2 1 X X
P2.1/TAINCLK/CA3 1 P2.2 (I/O) 0 I: 0; O: 1 0
Timer_A3.INCLK 0 0 1
DVSS 0 1 1
CA3 1 X X
P2.2/CAOUT/TA0/CA4 2 P2.2 (I/O) 0 I: 0; O: 1 0
CAOUT 0 1 1
Timer_A3.CCI0B 0 0 1
CA4 1 X X
P2.3/CA0/TA1 3 P2.3 (I/O) 0 I: 0; O: 1 0
Timer_A3.TA1 0 1 1
CA0 1 X X
P2.4/CA1/TA2 4 P2.4 (I/O) 0 I: 0; O: 1 0
Timer_A3.TA2 0 1 X
CA1 1 X 1
P2.6/ADC12CLK/
DMAE0/CA6
6 P2.6 (I/O) 0 I: 0; O: 1 0
ADC12CLK 0 1 1
DMAE0 0 0 1
CA6 1 X X
P2.7/TA0/CA7 7 P2.7 (I/O) 0 I: 0; O: 1 0
Timer_A3.TA0 0 1 1
CA7 1 X X
X: Don't care

P2.5, Input/Output With Schmitt Trigger and External ROSC for DCO

MSP430F2619S-HT Port_P2_2_las697.gif Figure 6-3 Port P2 (P2.5) Pin Schematic

Table 6-3 Port P2 (P2.5) Pin Functions

PIN NAME (P2.X) X FUNCTION CONTROL BITS/SIGNALS(1)
CAPD DCOR P2DIR.5 P2SEL.5
P2.5/ROSC /CA5 5 P2.5 (I/O) 0 0 I: 0; O: 1 0
ROSC(2) 0 1 X X
DVSS 0 0 1 1
ROSC 1 or selected 0 X X
X: Don't care
If ROSC is used it is connected to an external resistor.

Port P3 Pin Schematic: P3.0 to P3.7, Input/Output With Schmitt Trigger

MSP430F2619S-HT Port_P3_las697.gif Figure 6-4 Port P3 (P3.0) Pin Schematic

Table 6-4 Port P3 (P3.0) Pin Functions

PIN NAME (P3.X) X FUNCTION CONTROL BITS/SIGNALS(1)
P3DIR.x P3SEL.x
P3.0/UCB0STE/UCA0CLK 0 P3.0 (I/O) I: 0; O: 1 0
UCB0STE/UCA0CLK(2)(3) X 1
P3.1/UCB0SIMO/UCB0SDA 1 P3.1 (I/O) I: 0; O: 1 0
UCB0SIMO/UCB0SDA(2)(4) X 1
P3.2/UCB0SOMI/UCB0SCL 2 P3.2 (I/O I: 0; O: 1 0
UCB0SOMI/UCB0SCL(2)(4) X 1
P3.3/UCB0CLK/UCA0STE 3 P3.3 (I/O) I: 0; O: 1 0
UCB0CLK/UCA0STE(2) X 1
P3.4/UCA0TXD/UCA0SIMO 4 P3.4 (I/O) I: 0; O: 1 0
UCA0TXD/UCA0SIMO(2) X 1
P3.5/UCA0RXD/UCA0SOMI 5 P3.5 (I/O) I: 0; O: 1 0
UCA0RXD/UCA0SOMI(2) X 1
P3.6/UCA1TXD/UCA1SIMO 6 P3.6 (I/O) I: 0; O: 1 0
UCA1TXD/UCA1SIMO(2) X 1
P3.7/UCA1RXD/UCA1SOMI 7 P3.7 (I/O) I: 0; O: 1 0
UCA1RXD/UCA1SOMI(2) X 1
X: Don’t care
The pin direction is controlled by the USCI module.
UCA0CLK function takes precedence over UCB0STE function. If the pin is required as UCA0CLK input or output, USCI A0/B0 is forced to 3-wire SPI mode if 4-wire SPI mode is selected.
In case the I2C functionality is selected the output drives only the logical 0 to VSS level.

Port P4 Pin Schematic: P4.0 to P4.7, Input/Output With Schmitt Trigger

MSP430F2619S-HT Port_P4_las697.gif Figure 6-5 Port P4 (P4.0 to P4.7) Pin Schematic

Table 6-5 Port P4 (P4.0 to P4.7) Pin Functions

PIN NAME (P4.X) X FUNCTION CONTROL BITS/SIGNALS
P4DIR.x P4SEL.x
P4.0/TB0 0 P4.0 (I/O) I: 0; O: 1 0
Timer_B7.CCI0A and Timer_B7.CCI0B 0 1
Timer_B7.TB0 1 1
P4.1/TB1 1 P4.1 (I/O) I: 0; O: 1 0
Timer_B7.CCI1A and Timer_B7.CCI1B 0 1
Timer_B7.TB1 1 1
P4.2/TB2 2 P4.2 (I/O) I: 0; O: 1 0
Timer_B7.CCI2A and Timer_B7.CCI2B 0 1
Timer_B7.TB2 1 1
P4.3/TB3 3 P4.3 (I/O) I: 0; O: 1 0
Timer_B7.CCI3A and Timer_B7.CCI3B 0 1
Timer_B7.TB3 1 1
P4.4/TB4 4 P4.4 (I/O) I: 0; O: 1 0
Timer_B7.CCI4A and Timer_B7.CCI4B 0 1
Timer_B7.TB4 1 1
P4.5/TB5 5 P4.5 (I/O) I: 0; O: 1 0
Timer_B7.CCI5A and Timer_B7.CCI5B 0 1
Timer_B7.TB5 1 1
P4.6/TB6 6 P4.6 (I/O) I: 0; O: 1 0
Timer_B7.CCI6A and Timer_B7.CCI6B 0 1
Timer_B7.TB6 1 1
P4.7/TBCLK 7 P4.7 (I/O) I: 0; O: 1 0
Timer_B7.TBCLK 1 1

Port P5 Pin Schematic: P5.0 to P5.7, Input/Output With Schmitt Trigger

MSP430F2619S-HT Port_P5_las697.gif Figure 6-6 Port P5 (P5.0 to P5.7) Pin Schematics

Table 6-6 Port P5 (P5.0 to P5.7) Pin Functions

PIN NAME (P5.X) X FUNCTION CONTROL BITS/SIGNALS(1)
P5DIR.x P5SEL.x
P5.0/UCB1STE/UCA1CLK 0 P5.0 (I/O) I: 0; O: 1 0
UCB1STE/UCA1CLK(2)(3) X 1
P5.1/UCB1SIMO/UCB1SDA 1 P5.1 (I/O) I: 0; O: 1 0
UCB1SIMO/UCB1SDA(2)(4) X 1
P5.2/UCB1SOMI/UCB1SCL 2 P5.2 (I/O) I: 0; O: 1 0
UCB1SOMI/UCB1SCL(2)(4) X 1
P5.3/UCB1CLK/UCA1STE 3 P5.3 (I/O) I: 0; O: 1 0
UCB1CLK/UCA1STE(2) X 1
P5.4/MCLK 4 P5.0 (I/O) I: 0; O: 1 0
MCLK 1 1
P5.5/SMCLK 5 P5.1 (I/O) I: 0; O: 1 0
SMCLK 1 1
P5.6/ACLK 6 P5.2 (I/O) I: 0; O: 1 0
ACLK 1 1
P5.7/TBOUTH/SVSOUT 7 P5.7 (I/O) I: 0; O: 1 0
TBOUTH 0 1
SVSOUT 1 1
X: Don’t care
The pin direction is controlled by the USCI module.
UCA1CLK function takes precedence over UCB1STE function. If the pin is required as UCA1CLK input or output USCI A1/B1 will be forced to 3-wire SPI mode if 4-wire SPI mode is selected.
In case the I2C functionality is selected the output drives only the logical 0 to VSS level.

Port P6 Pin Schematic: P6.0 to P6.4, Input/Output With Schmitt Trigger

MSP430F2619S-HT Port_P6_1_las697.gif Figure 6-7 Port P6 (P6.0 to P6.4) Pin Schematic

Table 6-7 Port P6 (P6.0 to P6.4) Pin Functions

PIN NAME (P6.X) X FUNCTION CONTROL BITS/SIGNALS(1)
P6DIR.x P6SEL.x
P6.0/A0 0 P6.0 (I/O) I: 0; O: 1 0
A0(2) X X
P6.1/A1 1 P6.1 (I/O) I: 0; O: 1 0
A1(2) X X
P6.2/A2 2 P6.2 (I/O) I: 0; O: 1 0
A2(2) X X
P6.3/A3 3 P6.3(I/O) I: 0; O: 1 0
A3(2) X X
P6.4/A4 4 P6.3 (I/O) I: 0; O: 1 0
A4(2) X X
X: Don’t care
The ADC12 channel Ax is connected to AVss internally if not selected.

Port P6 Pin Schematic: P6.5 and P6.6, Input/Output With Schmitt Trigger

MSP430F2619S-HT Port_P6_2_las697.gif Figure 6-8 Port P6 (P6.5 to P6.6) Pin Schematic

Table 6-8 Port P6 (P6.5 to P6.6) Pin Functions

PIN NAME (P6.X) X FUNCTION CONTROL BITS/SIGNALS(1)
P6DIR.x P6SEL.x CAPD.x or
DAC12AMP > 0
P6.5/A5/DAC1 5 P6.5 (I/O) I: 0; O: 1 0 0
DVSS 1 1 0
A5(2) X X 1
DAC1 (DA12OPS = 1)(3) X X 1
P6.6/A6/DAC0 6 P6.6 (I/O) I: 0; O: 1 0 0
DVSS 1 1 0
A6(2) X X 1
DAC1 (DA12OPS = 0)(3) X X 1
X: Don’t care
The ADC12 channel Ax is connected to AVss internally if not selected.
The DAC outputs are floating if not selected.

Port P6 Pin Schematic: P6.7, Input/Output With Schmitt Trigger

MSP430F2619S-HT Port_P6_3_las697.gif Figure 6-9 Port P6 (P6.7) Pin Schematic

Table 6-9 Port P6 (P6.7) Pin Functions

PIN NAME (P6.X) X FUNCTION CONTROL BITS/SIGNALS(1)
P6DIR.x P6SEL.x
P6.7/A7/DAC1/SVSIN 7 P6.7 (I/O) I: 0; O: 1 0
DVSS 1 1
A7(2) X X
DAC1 (DA12OPS = 0)(3) X X
SVSIN (VLD = 15) X X
X: Don’t care
The ADC12 channel Ax is connected to AVss internally if not selected.
The DAC outputs are floating if not selected.

Port P7 Pin Schematic: P7.0 to P7.7, Input/Output With Schmitt Trigger

MSP430F2619S-HT Port_P7_las697.gif Figure 6-10 Port P7 (P7.0 to P7.7) Pin Schematic

Table 6-10 Port P7 (P7.0 to P7.7) Pin Functions(1)

PIN NAME (P7.X) X FUNCTION CONTROL BITS/SIGNALS
P7DIR.x P7SEL.x
P7.0 0 P7.0 (I/O) I: 0; O: 1 0
Input X 1
P7.1 1 P7.1 (I/O) I: 0; O: 1 0
Input X 1
P7.2 2 P7.2 (I/O) I: 0; O: 1 0
Input X 1
P7.3 3 P7.3 (I/O) I: 0; O: 1 0
Input X 1
P7.4 4 P7.4 (I/O) I: 0; O: 1 0
Input X 1
P7.5 5 P7.5 (I/O) I: 0; O: 1 0
Input X 1
P7.6 6 P7.6 (I/O) I: 0; O: 1 0
Input X 1
P7.7 7 P7.7 (I/O) I: 0; O: 1 0
Input X 1
80-pin KGD only.

Port P8 Pin Schematic: P8.0 to P8.5, Input/Output With Schmitt Trigger

MSP430F2619S-HT Port_P8_1_las697.gif Figure 6-11 Port P8 (P8.0 to P8.5) Pin Schematic

Table 6-11 Port P8 (P8.0 to P8.5) Pin Functions(1)

PIN NAME (P8.X) X FUNCTION CONTROL BITS/SIGNALS
P8DIR.x P8SEL.x
P8.0 0 P8.0 (I/O) I: 0; O: 1 0
Input X 1
P8.1 1 P8.1 (I/O) I: 0; O: 1 0
Input X 1
P8.2 2 P8.2 (I/O) I: 0; O: 1 0
Input X 1
P8.3 3 P8.3 (I/O) I: 0; O: 1 0
Input X 1
P8.4 4 P8.4 (I/O) I: 0; O: 1 0
Input X 1
P8.5 5 P8.5 (I/O) I: 0; O: 1 0
Input X 1
80-pin KGD only.

Port P8 Pin Schematic: P8.6, Input/Output With Schmitt Trigger

MSP430F2619S-HT Port_P8_2_las697.gif Figure 6-12 Port P8 (P8.6) Pin Schematic

Table 6-12 Port P8 (P8.6) Pin Functions(1)

PIN NAME (P8.X) X FUNCTION CONTROL BITS/SIGNALS
P8DIR.x P8SEL.x
P8.6/XOUT 6 P8.6 (I/O) I: 0; O: 1 0
XOUT (default) 0 1
DVSS 1 1
80-pin KGD only.

Port P8 Pin Schematic: P8.7, Input/Output With Schmitt Trigger

MSP430F2619S-HT Port_P8_3_las697.gif Figure 6-13 Port P8 (P8.7) Pin Schematic

Table 6-13 Port P8 (P8.7) Pin Functions(1)

PIN NAME (P8.X) X FUNCTION CONTROL BITS/SIGNALS
P8DIR.x P8SEL.x
P8.7/XIN 6 P8.7 (I/O) I: 0; O: 1 0
XIN (default) 0 1
VSS 1 1
80-pin KGD only.

JTAG Pins: TMS, TCK, TDI/TCLK, TDO/TDI, Input/Output With Schmitt Trigger

MSP430F2619S-HT jtag_las697.gif Figure 6-14 JTAG Module

JTAG Fuse Check Mode

MSP430 devices that have the fuse on the TEST terminal have a fuse check mode that tests the continuity of the fuse the first time the JTAG port is accessed after a power-on reset (POR). When activated, a fuse check current, ITF , of 1 mA at 3 V, 2.5 mA at 5 V can flow from the TEST pin to ground if the fuse is not burned. Care must be taken to avoid accidentally activating the fuse check mode and increasing overall system power consumption.

When the TEST pin is again taken low after a test or programming session, the fuse check mode and sense currents are terminated.

Activation of the fuse check mode occurs with the first negative edge on the TMS pin after power up or if TMS is being held low during power up. The second positive edge on the TMS pin deactivates the fuse check mode. After deactivation, the fuse check mode remains inactive until another POR occurs. After each POR the fuse check mode has the potential to be activated.

The fuse check current flows only when the fuse check mode is active and the TMS pin is in a low state (see Figure 6-15). Therefore, the additional current flow can be prevented by holding the TMS pin high (default condition).

MSP430F2619S-HT fuse_check_las530.gif Figure 6-15 Fuse Check Mode Current