SLLSF83B May   2021  – July 2025 TCAN11623-Q1 , TCAN11625-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configurations and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 ESD Ratings IEC Specification
    4. 5.4 Recomended Operating Conditions
    5. 5.5 Thermal Information
    6. 5.6 Power Supply Characteristics
    7. 5.7 Electrical Characteristics
    8. 5.8 Switching Characteristics
    9. 5.9 Typical Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  VSUP Pin
      2. 7.3.2  VCCOUT Pin
      3. 7.3.3  VFLT Pin
      4. 7.3.4  VLDO3 Pin
      5. 7.3.5  Digital Inputs and Outputs
      6. 7.3.6  Digital Control and Timing
      7. 7.3.7  VIO Pin
      8. 7.3.8  GND
      9. 7.3.9  INH Pin
      10. 7.3.10 WAKE Pin
      11. 7.3.11 nRST Pin
      12. 7.3.12 CAN Bus Pins
      13. 7.3.13 Local Faults
        1. 7.3.13.1 TXD Dominant Timeout (TXD DTO)
        2. 7.3.13.2 Thermal Shutdown (TSD)
        3. 7.3.13.3 Under/Over Voltage Lockout
        4. 7.3.13.4 Unpowered Devices
        5. 7.3.13.5 Floating Terminals
        6. 7.3.13.6 CAN Bus Short Circuit Current Limiting
        7. 7.3.13.7 Sleep Wake Error Timer
    4. 7.4 Device Functional Modes
      1. 7.4.1 Operating Mode Description
        1. 7.4.1.1 Normal Mode
        2. 7.4.1.2 Standby Mode
        3. 7.4.1.3 Sleep Mode
          1. 7.4.1.3.1 Remote Wake Request via Wake-Up Pattern (WUP)
          2. 7.4.1.3.2 Local Wake-Up (LWU) via WAKE Input Terminal
        4. 7.4.1.4 Reset Mode
        5. 7.4.1.5 Fail-safe Mode
      2. 7.4.2 CAN Transceiver
        1. 7.4.2.1 CAN Transceiver Operation
        2. 7.4.2.2 CAN Transceiver Modes
          1. 7.4.2.2.1 CAN Off Mode
          2. 7.4.2.2.2 CAN Autonomous: Inactive and Active
          3. 7.4.2.2.3 CAN Active
        3. 7.4.2.3 Driver and Receiver Function Tables
        4. 7.4.2.4 CAN Bus States
  9. Application Information
    1. 8.1 Application Information Disclaimer
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
        1. 8.2.1.1 Bus Loading, Length and Number of Nodes
      2. 8.2.2 Detailed Design Procedures
        1. 8.2.2.1 CAN Termination
    3. 8.3 Application Curves
    4. 8.4 Power Supply Requirements
    5. 8.5 Layout
      1. 8.5.1 Layout Guidelines
      2. 8.5.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Receiving Notification of Documentation Updates
    2. 9.2 Support Resources
    3. 9.3 Trademarks
    4. 9.4 Electrostatic Discharge Caution
    5. 9.5 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

CAN Bus States

The CAN bus has two logical states during operation: recessive and dominant. See Figure 7-13.

A dominant bus state occurs when the bus is driven differentially and corresponds to a logic low on the TXD and RXD pins. A recessive bus state occurs when the bus is biased to one half of the CAN transceiver supply voltage via the high resistance internal input resistors (RIN) of the receiver and corresponds to a logic high on the TXD and RXD pins.

A dominant state overwrites the recessive state during arbitration. Multiple CAN nodes may be transmitting a dominant bit at the same time during arbitration, and in this case the differential voltage of the CAN bus will be greater than the differential voltage of a single CAN driver. The TCAN1162x-Q1 CAN transceiver implements low-power standby and sleep modes which enables a third bus state where the bus pins are biased to ground via the high resistance internal resistors of the receiver.

TCAN11623-Q1 TCAN11625-Q1 Bus StatesFigure 7-13 Bus States