SCDS416C October   2020  – August 2021 TMUX7211 , TMUX7212 , TMUX7213

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  ESD Ratings
    3. 7.3  Recommended Operating Conditions
    4. 7.4  Thermal Information
    5. 7.5  Source or Drain Continuous Current
    6. 7.6  ±15 V Dual Supply: Electrical Characteristics 
    7. 7.7  ±15 V Dual Supply: Switching Characteristics 
    8. 7.8  ±20 V Dual Supply: Electrical Characteristics
    9. 7.9  ±20 V Dual Supply: Switching Characteristics
    10. 7.10 44 V Single Supply: Electrical Characteristics 
    11. 7.11 44 V Single Supply: Switching Characteristics 
    12. 7.12 12 V Single Supply: Electrical Characteristics 
    13. 7.13 12 V Single Supply: Switching Characteristics 
    14. 7.14 Typical Characteristics
  8. Parameter Measurement Information
    1. 8.1  On-Resistance
    2. 8.2  Off-Leakage Current
    3. 8.3  On-Leakage Current
    4. 8.4  tON and tOFF Time
    5. 8.5  tON (VDD) Time
    6. 8.6  Propagation Delay
    7. 8.7  Charge Injection
    8. 8.8  Off Isolation
    9. 8.9  Channel-to-Channel Crosstalk
    10. 8.10 Bandwidth
    11. 8.11 THD + Noise
    12. 8.12 Power Supply Rejection Ratio (PSRR)
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1 Bidirectional Operation
      2. 9.3.2 Rail-to-Rail Operation
      3. 9.3.3 1.8 V Logic Compatible Inputs
      4. 9.3.4 Integrated Pull-Down Resistor on Logic Pins
      5. 9.3.5 Fail-Safe Logic
      6. 9.3.6 Latch-Up Immune
      7. 9.3.7 Ultra-Low Charge Injection
    4. 9.4 Device Functional Modes
    5. 9.5 Truth Tables
  10. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Application
      1. 10.2.1 Design Requirements
      2. 10.2.2 Detailed Design Procedure
      3. 10.2.3 Application Curve
  11. 11Power Supply Recommendations
  12. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Example
  13. 13Device and Documentation Support
    1. 13.1 Documentation Support
      1. 13.1.1 Related Documentation
    2. 13.2 Receiving Notification of Documentation Updates
    3. 13.3 Support Resources
    4. 13.4 Trademarks
    5. 13.5 Electrostatic Discharge Caution
    6. 13.6 Glossary
  14. 14Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Typical Characteristics

at TA = 25°C (unless otherwise noted)

Figure 7-1 On-Resistance vs. Source or Drain Voltage - Dual Supply
Figure 7-3 On-Resistance vs. Source or Drain Voltage - Single Supply
VDD = 15 V, VSS = -15 V
Figure 7-5 On-Resistance vs Temperature
VDD = 12 V, VSS = 0 V
Figure 7-7 On-Resistance vs Temperature
VDD = 20 V, VSS = -20V
Figure 7-9 Leakage Current vs Temperature
VDD = 36 V, VSS = 0 V
Figure 7-11 Leakage Current vs Temperature
Figure 7-13 Supply Current vs. Logic Voltage
Figure 7-15 Charge Injection vs. Drain Voltage - Dual Supply
Figure 7-17 Charge Injection vs. Drain Voltage - Single Supply
VDD = 36 V, VSS = 0 V
Figure 7-19 TON and TOFF vs. Temperature
Figure 7-21 Off-Isolation vs Frequency
Figure 7-23 THD+N vs. Frequency (Dual Supplies)
VDD = +15 V, VSS = -15 V
Figure 7-25 On Response vs Frequency
VDD = +15 V, VSS = -15 V
Figure 7-27 Capacitance vs. Source Voltage or Drain Voltage
Figure 7-2 On-Resistance vs. Source or Drain Voltage - Dual Supply
Figure 7-4 On-Resistance vs. Source or Drain Voltage - Single Supply
VDD = 20 V, VSS = -20V
Figure 7-6 On-Resistance vs Temperature
VDD = 36 V, VSS = 0 V
Figure 7-8 On-Resistance vs Temperature
VDD = 15 V, VSS = -15 V
Figure 7-10 Leakage Current vs Temperature
VDD = 12 V, VSS = 0 V
Figure 7-12 Leakage Current vs Temperature
Figure 7-14 Charge Injection vs. Source Voltage - Dual Supply
Figure 7-16 Charge Injection vs. Source Voltage - Single Supply
VDD = 15 V, VSS = -15 V
Figure 7-18 TON and TOFF vs. Temperature
Figure 7-20 Off-Isolation vs Frequency
VDD = +15 V, VSS = -15 V
Figure 7-22 Crosstalk vs Frequency
Figure 7-24 THD+N vs. Frequency (Single Supplies)
VDD = +15 V, VSS = -15 V
Figure 7-26 ACPSRR vs. Frequency
VDD = 12 V, VSS = 0 V
Figure 7-28 Capacitance vs. Source Voltage or Drain Voltage