SBOS496B March   2020  – February 2024 TPA6211T-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Operating Characteristics
    7. 5.7 Dissipation Ratings
    8.     Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 Advantages of Fully Differential Amplifiers
      2. 6.3.2 Fully Differential Amplifier Efficiency and Thermal Information
      3. 6.3.3 Differential Output Versus Single-Ended Output
    4. 6.4 Device Functional Modes
  8. Application and Implementation
    1. 7.1 Application Information
    2. 7.2 Typical Applications
      1. 7.2.1 Typical Differential Input Application
        1. 7.2.1.1 Design Requirements
        2. 7.2.1.2 Detailed Design Procedure
          1. 7.2.1.2.1 Resistors (RI)
          2. 7.2.1.2.2 Bypass Capacitor (CBYPASS) and Start-Up Time
          3. 7.2.1.2.3 Input Capacitor (CI)
          4. 7.2.1.2.4 Band-Pass Filter (RI, CI, and CF)
            1. 7.2.1.2.4.1 Step 1: Low-Pass Filter
            2. 7.2.1.2.4.2 Step 2: High-Pass Filter
            3. 7.2.1.2.4.3 Step 3: Additional Low-Pass Filter
          5. 7.2.1.2.5 Decoupling Capacitor (CS)
          6. 7.2.1.2.6 Using Low-ESR Capacitors
        3. 7.2.1.3 Application Curves
      2. 7.2.2 Other Application Circuits
  9. Power Supply Recommendations
    1. 8.1 Power Supply Decoupling Capacitor
  10. Layout
    1. 9.1 Layout Guidelines
    2. 9.2 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 Receiving Notification of Documentation Updates
    2. 10.2 Community Resources
    3. 10.3 Trademarks
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Power Supply Decoupling Capacitor

The TPA6211T-Q1 device requires adequate power supply decoupling to ensure a high efficiency operation with low total harmonic distortion (THD). Place a low equivalent series resistance (ESR) ceramic capacitor, typically 0.1 µF, as close as possible of the VDD pin. This choice of capacitor and placement helps with higher frequency transients, spikes, or digital hash on the line. TI recommends placing a 2.2-µF to 10-µF capacitor on the VDD supply trace. This larger capacitor acts as a charge reservoir, providing energy faster than the board supply, thus helping to prevent any droop in the supply voltage.