SLVSGY2 October   2023 TPS2HCS10-Q1

ADVANCE INFORMATION  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Revision History
  6. Pin Configuration and Functions
    1. 5.1 Recommended Connections for Unused Pins
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 SPI Timing Requirements
    7. 6.7 Switching Characteristics
  8. Parameter Measurement Information
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Protection Mechanisms
        1. 8.3.1.1 Programmable Fuse Protection
        2. 8.3.1.2 Thermal Shutdown
        3. 8.3.1.3 Overcurrent Protection And Capacitive Load Charging
        4. 8.3.1.4 Reverse Battery
      2. 8.3.2 Diagnostic Mechanisms
        1. 8.3.2.1 VOUT Short-to-Battery and Open-Load
          1. 8.3.2.1.1 Detection With Channel Output (FET) Enabled
          2. 8.3.2.1.2 Detection With Channel Output Disabled
        2. 8.3.2.2 Digital Current Sense Output
          1. 8.3.2.2.1 RSNS Value and Accuracy / Resolution of Current Measurement
            1. 8.3.2.2.1.1 High Accuracy Load Current Sense
            2. 8.3.2.2.1.2 SNS Output Filter
        3. 8.3.2.3 Output Voltage and FET Temperature Sensing
    4. 8.4 Device Functional Modes
      1. 8.4.1 State Diagram
      2. 8.4.2 SLEEP
      3. 8.4.3 CONFIG/ACTIVE
      4. 8.4.4 Battery Supply Input (VBB) Under-voltage
      5. 8.4.5 LOW POWER MODE (LPM) State
      6. 8.4.6 LIMP HOME state
      7. 8.4.7 SPI Mode Operation
    5. 8.5 TPS2HC10S Registers
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Thermal Considerations
        2. 9.2.2.2 Configuring the Capacitive Charging Mode
    3. 9.3 Power Supply Recommendations
    4. 9.4 Layout
      1. 9.4.1 Layout Guidelines
      2. 9.4.2 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 Documentation Support
      1. 10.1.1 Related Documentation
    2. 10.2 Receiving Notification of Documentation Updates
    3. 10.3 Support Resources
    4. 10.4 Trademarks
    5. 10.5 Electrostatic Discharge Caution
    6. 10.6 Glossary
  12. 11Mechanical, Packaging, and Orderable Information
    1. 11.1 Tape and Reel Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • PWP|16
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Configuring the Capacitive Charging Mode

The configuration parameters for the two channels are in the ILIM_CONFIG_CH1 and ILIM_CONFIG_CH2 registers respectively. The device can be configured in the capacitive charging mode that is the best choice for the capacitance and the parallel load current draw. The device offers two options - a constant current charging mode designed for cases where there is a significant load current during charging phase (Case 1) or a fixed dV/dt rate charging mode that is designed for very large capacitive loads that needs to be charged with a very low charging current (Case 2). For both modes, the charging rate is set by the INRUSH_LIMIT_CH1_OR_CAP_CHRG_DVDT bits ([7:4]) in the ILIM_CONFIG_CH1 or ILIM_CONFIG_CH2 registers. The INRUSH_DURATION_CHx bits should be set such that the worst case expected capacitive charge time is below the programmed inrush duration. The recommended choice of bit settings for each application case is listed in the table below.

Table 9-3 Setting Capacitive Charging Mode Parameters
Bit Field in the ILIM_CONFIG_CHx Register Case 1 Case 2
CAP_CHRG_CHx 0x02h 0x01h
INRUSH_DURATION_CHx 0x02h 0x06h
INRUSH_LIMIT_CH1_OR_CAP_CHRG_DVDT 0x04h 0x0Ah