SLVSGY2A October   2023  – October 2025 TPS2HCS10-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison Table
  6. Pin Configuration and Functions
    1. 5.1 Version A Package
    2. 5.2 Pinout - Version A
    3. 5.3 Version B Package
    4. 5.4 Pinout - Version B
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 SPI Timing Requirements
    7. 6.7 Switching Characteristics
    8. 6.8 Typical Characteristics
  8. Parameter Measurement Information
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Protection Mechanisms
        1. 8.3.1.1 Overcurrent Protection
          1. 8.3.1.1.1 Inrush Period - Overcurrent Protection
          2. 8.3.1.1.2 Overcurrent Protection - Steady State Operation
          3. 8.3.1.1.3 Programmable Fuse Protection
          4. 8.3.1.1.4 Immediate Shutdown Overcurrent Protection (IOCP)
          5. 8.3.1.1.5 Auto Retry and Latch-Off Behavior
        2. 8.3.1.2 Thermal Shutdown
        3. 8.3.1.3 Reverse Battery
      2. 8.3.2 Diagnostic Mechanisms
        1. 8.3.2.1 Integrated ADC
        2. 8.3.2.2 Digital Current Sense Output
        3. 8.3.2.3 Output Voltage Measurement
        4. 8.3.2.4 MOSFET Temperature Measurement
        5. 8.3.2.5 Drain-to-Source Voltage (VDS) Measurement
        6. 8.3.2.6 VBB Voltage Measurement
        7. 8.3.2.7 VOUT Short-to-Battery and Open-Load
          1. 8.3.2.7.1 Measurement with Channel Output (FET) Enabled
          2. 8.3.2.7.2 Detection with Channel Output Disabled
      3. 8.3.3 Parallel Mode Operation
    4. 8.4 Device Functional Modes
      1. 8.4.1 State Diagram
      2. 8.4.2 Output Control
      3. 8.4.3 SPI Mode Operation
      4. 8.4.4 Fault Reporting
      5. 8.4.5 SLEEP
      6. 8.4.6 CONFIG/ACTIVE
      7. 8.4.7 LIMP_HOME State (Version A only)
      8. 8.4.8 Battery Supply Input (VBB) Under-Voltage
      9. 8.4.9 LOW POWER MODE (LPM) States
        1. 8.4.9.1 MANUAL_LPM State
        2. 8.4.9.2 AUTO_LPM State
    5. 8.5 TPS2HCS10-Q1 Registers
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Thermal Considerations
        2. 9.2.2.2 Configuring the Capacitive Charging Mode
      3. 9.2.3 Application Curve
    3. 9.3 Power Supply Recommendations
    4. 9.4 Layout
      1. 9.4.1 Layout Guidelines
      2. 9.4.2 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 Third-Party Products Disclaimer
    2. 10.2 Receiving Notification of Documentation Updates
    3. 10.3 Support Resources
    4. 10.4 Trademarks
    5. 10.5 Electrostatic Discharge Caution
    6. 10.6 Glossary
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • PWP|16
Thermal pad, mechanical data (Package|Pins)
Orderable Information

SLEEP

The TPS2HCS10-Q1 device offers a SLEEP state where the device is placed into an ultra low current consumption state. When the device is in SLEEP state, both channels are OFF, registers are cleared, and all digital circuits are powered off. The device will transition to this state if VBB < VBB_UVLO and VDD < VDD_UVLO or if VDD drops below VDD_UVLO while in either MANUAL_LPM or AUTO_LPM state. The device can manually be put into SLEEP state by writing a 1 to the SLEEP bit in the SLEEP register.

The device can be woken from the SLEEP state through the CSN pin going low. There are two methods to wake the device up from SLEEP through the CSN pin:

  1. Pulse the CSN pin low for t < tREADY
  2. Hold the CSN pin low for at least tREADY and continue to hold CSN pin low through the first SPI transaction

Both methods above will result in the device waking up without a SPI_ERR fault. A dummy SPI transaction could be used to sastify method #1 if the dummy SPI transaction is completed in t < tREADY. Figure 8-30 below shows examples of the two proper wakeup scenarios which will result in no SPI_ERR fault and one improper wakeup scenario which will result in a SPI_ERR fault.

Upon wakeup from SLEEP state, the values in the registers will be set to their reset values detailed in the register map below. Additionally, the FLT pin will be asserted low and the POR, VDD_UVLO, and VBB_UVLO fault bits will be asserted and will be cleared when the GLOBAL_FAULT_TYPE register is read if none of these faults currently exist when read.

TPS2HCS10-Q1 Startup Communication TimingFigure 8-30 Startup Communication Timing