SLUSAF8E July   2011  – January 2016 TPS40322

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Voltage Reference
      2. 7.3.2  Output Voltage Setting
      3. 7.3.3  Input Voltage Feedforward
      4. 7.3.4  Current Sensing
      5. 7.3.5  Overcurrent Protection
      6. 7.3.6  Two-Phase Mode, Remote Sense Amplifier, and Current Sharing Loop
      7. 7.3.7  Start-Up and Shutdown
        1. 7.3.7.1 Start-Up Sequence
        2. 7.3.7.2 Prebiased Output Start-Up
        3. 7.3.7.3 Shutdown
      8. 7.3.8  Switching Frequency and Master or Slave Synchronization
      9. 7.3.9  Overvoltage and Undervoltage Fault Protection
      10. 7.3.10 Input Undervoltage Lockout (UVLO)
      11. 7.3.11 Power Good
      12. 7.3.12 Thermal Shutdown
      13. 7.3.13 Connection of Unused Pins
    4. 7.4 Device Functional Modes
  8. Applications and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Applications
      1. 8.2.1 Dual-Output Configuration from 12-V Nominal to 1.2-V and 1.8-V DC-to-DC Converter Using the TPS40322
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
          1. 8.2.1.2.1  Selecting a Switching Frequency
          2. 8.2.1.2.2  Inductor Selection (L1)
          3. 8.2.1.2.3  Output Capacitor Selection (C10 through C16)
          4. 8.2.1.2.4  Peak Current Rating of Inductor
          5. 8.2.1.2.5  Input Capacitor Selection (C3 through C6)
          6. 8.2.1.2.6  MOSFET Selection (Q1)
          7. 8.2.1.2.7  ILIM Resistor (R2)
          8. 8.2.1.2.8  Feedback Divider (R10, R14)
          9. 8.2.1.2.9  Compensation: (R11, R12, C17, C19, C21)
          10. 8.2.1.2.10 Boot-Strap Capacitor (C7)
          11. 8.2.1.2.11 General Device Components
            1. 8.2.1.2.11.1 Synchronization (SYNC Pin)
            2. 8.2.1.2.11.2 RT Resistor (R6)
            3. 8.2.1.2.11.3 Differential Amplifier Out (DIFFO Pin)
            4. 8.2.1.2.11.4 EN/SS Timing Capacitors (C8)
            5. 8.2.1.2.11.5 Power Good (PG1, PG2 Pins)
            6. 8.2.1.2.11.6 Phase Set (PHSET Pin)
            7. 8.2.1.2.11.7 UVLO Programming Resistors (R1 and R3)
            8. 8.2.1.2.11.8 VDD Bypass Capacitor (C2)
            9. 8.2.1.2.11.9 VBP6 Bypass Capacitor (C18)
        3. 8.2.1.3 Application Curves
      2. 8.2.2 Two-Phase, Single Output Configuration from 12-V nominal to 1.2-V DC-to-DC Converter Using the TPS40322
        1. 8.2.2.1 Design Requirements
        2. 8.2.2.2 Detailed Design Procedure
        3. 8.2.2.3 Application Curves
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
      1. 10.1.1 Power Stage
      2. 10.1.2 Device Peripheral
      3. 10.1.3 Thermal Pad Layout
    2. 10.2 Layout Example
    3. 10.3 Mounting and Thermal Profile Recommendation
  11. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Third-Party Products Disclaimer
      2. 11.1.2 Development Support
    2. 11.2 Documentation Support
      1. 11.2.1 Related Documentation
    3. 11.3 Community Resources
    4. 11.4 Trademarks
    5. 11.5 Electrostatic Discharge Caution
    6. 11.6 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

6 Specifications

6.1 Absolute Maximum Ratings

Over operating free-air temperature range, all voltages are with respect to GND (unless otherwise noted)(1)
MIN MAX UNIT
Voltage VDD –0.3 22 V
SW1, SW2 –3 27
SW1, SW2 (< 100-ns pulse width) –5
SW1, SW2 (< 10-ns pulse width) –7.5 30
BOOT1, BOOT2 –0.3 30
BOOT1, BOOT2 (< 10-ns pulse width) –0.5 33
BP6 –0.3 7
HDRV1, HDRV2 –2 30
BOOT1-SW1, BOOT2-SW2, HDRV1-SW1, HDRV2-SW2
(differential from BOOT or HDRV to SW)
–0.3 7
All other pins –0.3 7
Temperature Operating temperature, TJ –40 145 °C
Storage temperature, Tstg –55 150
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute maximum rated conditions for extended periods may affect device reliability.

6.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±1500
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

6.3 Recommended Operating Conditions

MIN MAX UNIT
VVDD Input operating voltage 3 20 V
TJ Operating junction temperature –40 125 °C

6.4 Thermal Information

THERMAL METRIC(1) TPS40322 UNIT
RHB (VQFN)
32 PINS
RθJA Junction-to-ambient thermal resistance 37.1 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 28.4 °C/W
RθJB Junction-to-board thermal resistance 9.8 °C/W
ψJT Junction-to-top characterization parameter 0.4 °C/W
ψJB Junction-to-board characterization parameter 9.7 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance 2.6 °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

6.5 Electrical Characteristics

TJ = –40°C to 125°C, VVDD = 12 V, RRT = 40 kΩ, fSW = 500 kHz (unless otherwise noted),
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
INPUT SUPPLY
VDD Input voltage range 3 20 V
IDDSDN Shutdown VENx/SSx = 0 V 200 250 µA
IDDQ Quiescent, non-switching VFB = 0.65 V, ENx/SSx float 6 8 mA
UVLO
UVLO Minimum turn-on voltage 1.21 1.24 1.27 V
UVLOHYS Hysteresis current 13 15 17 μA
BP REGULATOR
BP Regulator voltage 7 V ≤ VVDD ≤ 20 V 6.2 6.5 6.8 V
VDO Regulator dropout voltage IBP = 25 mA, VVDD = 3 V 50 100 mV
IBP Regulator continuous current limit(1) 100 mA
VBPUVLO Regulator output UVLO 2.40 2.70 2.95 V
VBPUVLO-HYS Regulator output UVLO hysteresis 180 210 250 mV
OSCILLATOR AND RAMP GENERATOR
fSW Oscillator frequency 100 1000 kHz
RRT = 40 kΩ 450 500 550 kHz
VRAMP Ramp amplitude (peak-to-peak) 3 V < VVDD < 20 V VDD / 8.5 V
VVAL Valley voltage 0.85 V
fSYNC SYNC frequency range 200 2000 kHz
tPW(sync) SYNC input minimum pulse width 100 ns
VH(sync) Rising edge threshold to set sync pulse 2 V
VL(sync) Falling edge threshold to reset sync pulse 0.8 V
fMASTER Master clock frequency 200 2000 kHz
ΔfSYNC Percent of master frequency for synchronization –20% 20%
VPHSET Master 0°/180° phase shift 0.5 V
Slave 0°/180° phase shift 0.6 2 V
Slave 90°/270° phase shift 2.1 V
PWM
PWM(off) Minimum PWM off-time 90 130 ns
tON(min) Minimum controllable pulse width See (1) 90 ns
tDEAD Output driver dead time HDRV off to LDRV on 20 35 40 ns
tDEAD Output driver dead time LDRV off to HDRV on 20 35 40 ns
ERROR AMPLIFIER AND VOLTAGE REFERENCE
VFB FB input voltage 0°C < TJ < 70°C 597 600 603 mV
–40°C < TJ < 125°C 594 600 606
IFB FB input bias current 20 75 nA
GBWP Unity gain bandwidth See (1) 24 MHz
AVOL Open loop gain See (1) 80 dB
IOH High-level output current 3 mA
IOL Low-level output current 9 mA
ENABLE AND SOFT START
VIH High-level input voltage 0.55 0.7 1 V
VIL Low-level input voltage 0.23 0.26 0.3 V
ISS Soft-start source current 8 10 12 μA
VSS Soft-start voltage level 0.8 V
IDISCHG Soft-start discharge current 130 μA
OVERCURRENT PROTECTION
IILIM ILIM program current TJ = 25°C 9.5 10 10.5 μA
tHICCUP Hiccup cycles to recover 6 Cycles
CURRENT SENSE AMPLIFIER
VDIFF Differential input voltage range –60 60 mV
VCM Input common mode range 0 5.6 V
ACS Current sensing gain 15 V/V
VCSOUT Current sense amplifier output VCSIN = 20 mV, TJ = 25°C 270 300 330 mV
fC0 Closed loop bandwidth(1) 3 MHz
Current sense amplifier output difference between CH1 and CH2 VCSIN = 20 mV to both CS1 and CS2 –15 15 mV
OVERVOLTAGE AND UNDERVOLTAGE PROTECTION
VOVP Feedback voltage limit for OVP 679 700 735 mV
VUVP Feedback voltage limit for UVP 475 500 525 mV
GATE DRIVERS
RHDHI High-side driver pull-up resistance VBOOT – VSW = 6.5 V, IHDRV = –40 mA 0.8 1.5 2.5 Ω
RHDLO High-side driver pull-down resistance VBOOT – VSW = 6.5 V, IHDRV = 40 mA 0.5 1 1.6 Ω
RLDHI Low-side driver pull-up resistance ILDRV = –40 mA 0.8 1.5 2.5 Ω
RLDLO Low-side driver pull-down resistance ILDRV = 40 mA 0.35 0.6 1.3 Ω
tHRISE High-side driver rise time CLOAD = 5 nF, See (1) 15 ns
tHFALL High-side driver fall time CLOAD = 5 nF, See (1) 12 ns
tLRISE Low-side driver rise time CLOAD = 5 nF, See (1) 15 ns
tLFALL Low-side driver fall time CLOAD = 5 nF, See(1) 10 ns
BOOT SWITCH
VDFWD Bootstrap switch voltage drop IBOOT = 5 mA 0.1 V
REMOTE SENSE
VIOFSET Input offset voltage VDIFFO = 0.9 V –2 2 mV
Gain Differential gain 0.995 1.005 V/V
BW Close loop bandwidth(1) 2 MHz
VDIFFO Output voltage at DIFFO pin VBP6 – 0.2 V
ISRC Output source current 1 mA
ISNK Output sink current 1 mA
POWERGOOD
VOV Feedback voltage limit for PGOOD 650 675 697 mV
VUV Feedback voltage limit for PGOOD 510 525 545 mV
VPGD(hyst) PGOOD hysteresis voltage at FB 25 40 mV
RRGD PGOOD pull down resistance 50 70 Ω
IPGD(leak) PGOOD leakage current 20 µA
THERMAL SHUTDOWN
TSD Junction shutdown temperature See (1) 150 °C
TSD(hyst) Hysteresis See (1) 20 °C
(1) Specified by design. Not production tested.

6.6 Typical Characteristics

TPS40322 uvloon_v_t_lusaf8.png
Figure 1. UVLO Turnon Voltage vs Junction Temperature
TPS40322 iss_v_t_lusaf8.png
Figure 3. Soft-Start Current vs Junction Temperature
TPS40322 vfbx_v_t_lusaf8.gif
Figure 5. Error Amplifier Feedback Voltage vs Junction Temperature
TPS40322 enx_vil_lusaf8.png
Figure 7. ENx Low-Level Inout Voltage vs Junction Temperature
TPS40322 ilim_v_t_lusaf8.png
Figure 9. Current Limit vs Junction Temperature
TPS40322 rsgain_v_t_lusaf8.gif
Figure 11. Remote Sense Gain vs Junction Temperature
TPS40322 freq1k_v_t_lusaf8.gif
Figure 13. Frequency vs Junction Temperature
TPS40322 uvlohyst_v_t_lusaf8.png
Figure 2. UVLO Hysteresis Current vs Junction Temperature
TPS40322 iq_v_t_lusaf8.png
Figure 4. Non-Switching Quiescent Current vs Junction Temperature
TPS40322 bpuvlo_t_lusaf8.png
Figure 6. BP UVLO Threshold vs Junction Temperature
TPS40322 enx_vih_lusaf8.png
Figure 8. ENx High-Level Inout Voltage vs Junction Temperature
TPS40322 srsiov_v_t_lusaf8.png
Figure 10. Remote Sense Input Offset Voltage vs Junction Temperature
TPS40322 freq100_v_t_lusaf8.gif
Figure 12. Frequency vs Junction Temperature
TPS40322 freq_vin_t_lusaf8.png
Figure 14. Frequency vs Junction Temperature