SLVSFW7 September   2022 TPS544C26

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Internal VCC LDO and Using an External Bias on VCC/VDRV Pin
      2. 7.3.2  Input Undervoltage Lockout (UVLO)
        1. 7.3.2.1 Fixed VCC_OK UVLO
        2. 7.3.2.2 Fixed VDRV UVLO
        3. 7.3.2.3 Programmable PVIN UVLO
        4. 7.3.2.4 Enable
      3. 7.3.3  Differential Remote Sense and Internal Feedback Divider
      4. 7.3.4  Set the Output Voltage and VID Table
      5. 7.3.5  Startup and Shutdown
      6. 7.3.6  Dynamic Voltage Slew Rate
      7. 7.3.7  Adaptive Voltage Positioning (Droop) and DC Load Line (DCLL)
      8. 7.3.8  Loop Compensation
      9. 7.3.9  Set Switching Frequency
      10. 7.3.10 Switching Node (SW)
      11. 7.3.11 Overcurrent Limit and Low-side Current Sense
      12. 7.3.12 Negative Overcurrent Limit
      13. 7.3.13 Zero-Crossing Detection
      14. 7.3.14 Input Overvoltage Protection
      15. 7.3.15 Output Overvoltage and Undervoltage Protection
      16. 7.3.16 Overtemperature Protection
      17. 7.3.17 VR Ready
      18. 7.3.18 Catastrophic Fault Alert: CAT_FAULT#
      19. 7.3.19 Telemetry
      20. 7.3.20 I2C Interface General Description
        1. 7.3.20.1 Setting the I2C Address
        2. 7.3.20.2 I2C Write Protection
        3. 7.3.20.3 I2C Registers With Special Handling
    4. 7.4 Device Functional Modes
      1. 7.4.1 Forced Continuous-Conduction Mode
      2. 7.4.2 Auto-Skip Eco-mode™ Light Load Operation
      3. 7.4.3 Powering the Device From a 12-V Bus
      4. 7.4.4 Powering the Device From a Split-rail Configuration
    5. 7.5 Programming
      1. 7.5.1 Supported I2C Registers
      2. 7.5.2 Support of Intel SVID Interface
    6. 7.6 Register Maps
      1. 7.6.1  (01h) OPERATION
      2. 7.6.2  (02h) ON_OFF_CONFIG
      3. 7.6.3  (03h) CLEAR_FAULTS
      4. 7.6.4  (15h) STORE_USER_ALL
      5. 7.6.5  (16h) RESTORE_USER_ALL
      6. 7.6.6  (33h) FREQUENCY_SWITCH
      7. 7.6.7  (35h) VIN_ON
      8. 7.6.8  (36h) VIN_OFF
      9. 7.6.9  (40h) VOUT_OV_FAULT_LIMIT
      10. 7.6.10 (41h) VOUT_OV_FAULT_RESPONSE
      11. 7.6.11 (42h) VOUT_OV_WARN_LIMIT
      12. 7.6.12 (43h) VOUT_UV_WARN_LIMIT
      13. 7.6.13 (44h) VOUT_UV_FAULT_LIMIT
      14. 7.6.14 (45h) VOUT_UV_FAULT_RESPONSE
      15. 7.6.15 (46h) IOUT_OC_FAULT_LIMIT
      16. 7.6.16 (4Fh) OT_FAULT_LIMIT
      17. 7.6.17 (50h) OT_FAULT_RESPONSE
      18. 7.6.18 (51h) OT_WARN_LIMIT
      19. 7.6.19 (55h) VIN_OV_FAULT_LIMIT
      20. 7.6.20 (60h) TON_DELAY
      21. 7.6.21 (61h) TON_RISE
      22. 7.6.22 (64h) TOFF_DELAY
      23. 7.6.23 (65h) TOFF_FALL
      24. 7.6.24 (6Bh) PIN_OP_WARN_LIMIT
      25. 7.6.25 (7Ah) STATUS_VOUT
      26. 7.6.26 (7Bh) STATUS_IOUT
      27. 7.6.27 (7Ch) STATUS_INPUT
      28. 7.6.28 (7Dh) STATUS_TEMPERATURE
      29. 7.6.29 (80h) STATUS_MFR_SPECIFIC
      30. 7.6.30 (88h) READ_VIN
      31. 7.6.31 (89h) READ_IIN
      32. 7.6.32 (8Bh) READ_VOUT
      33. 7.6.33 (8Ch) READ_IOUT
      34. 7.6.34 (8Dh) READ_TEMPERATURE_1
      35. 7.6.35 (97h) READ_PIN
      36. 7.6.36 (A0h) SYS_CFG_USER1
      37. 7.6.37 (A2h) I2C_ADDR
      38. 7.6.38 (A3h) SVID_ADDR
      39. 7.6.39 (A4h) IMON_CAL
      40. 7.6.40 (A5h) IIN_CAL
      41. 7.6.41 (A6h) VOUT_CMD
      42. 7.6.42 (A7h) VID_SETTING
      43. 7.6.43 (A8h) I2C_OFFSET
      44. 7.6.44 (A9h) COMP1_MAIN
      45. 7.6.45 (AAh) COMP2_MAIN
      46. 7.6.46 (ABh) COMP1_ALT
      47. 7.6.47 (ACh) COMP2_ALT
      48. 7.6.48 (ADh) COMP3
      49. 7.6.49 (AFh) DVS_CFG
      50. 7.6.50 (B0h) DVID_OFFSET
      51. 7.6.51 (B1h) REG_LOCK
      52. 7.6.52 (B3h) PIN_SENSE_RES
      53. 7.6.53 (B4h) IOUT_NOC_LIMIT
      54. 7.6.54 (B5h) USER_DATA_01
      55. 7.6.55 (B6h) USER_DATA_02
      56. 7.6.56 (BAh) STATUS1_SVID
      57. 7.6.57 (BBh) STATUS2_SVID
      58. 7.6.58 (BCh) CAPABILITY
      59. 7.6.59 (BDh) EXT_CAPABILITY_VIDOMAX_H
      60. 7.6.60 (BEh) VIDOMAX_L
      61. 7.6.61 (C0h) ICC_MAX
      62. 7.6.62 (C1h) TEMP_MAX
      63. 7.6.63 (C2h) PROTOCOL_ID_SVID
      64. 7.6.64 (C6h) VENDOR_ID
      65. 7.6.65 (C8h) PRODUCT_ID
      66. 7.6.66 (C9h) PRODUCT_REV_ID
  8. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Application
      2. 8.2.2 Design Requirements
      3. 8.2.3 Detailed Design Procedure
        1. 8.2.3.1 Inductor Selection
        2. 8.2.3.2 Input Capacitor Selection
        3. 8.2.3.3 Output Capacitor Selection
        4. 8.2.3.4 VCC/VRDV Bypass Capacitor
        5. 8.2.3.5 BOOT Capacitor Selection
        6. 8.2.3.6 RSENSE Selection
        7. 8.2.3.7 VINSENP and VINSENN Capacitor Selection
        8. 8.2.3.8 VRRDY Pullup Resistor Selection
        9. 8.2.3.9 I2C Address Resistor Selection
      4. 8.2.4 Application Curves
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Example
        1. 8.4.2.1 Thermal Performance on TPS544C26EVM
  9. Device and Documentation Support
    1. 9.1 Documentation Support
    2. 9.2 Receiving Notification of Documentation Updates
    3. 9.3 Support Resources
    4. 9.4 Trademarks
    5. 9.5 Electrostatic Discharge Caution
    6. 9.6 Glossary
  10. 10Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Layout Guidelines

Layout is critical for good power-supply design. Layout example shows the recommended PCB-layout configuration. A list of PCB layout considerations using the device is listed as follows:

  • Place the power components (including input and output capacitors, the inductor, and the IC) on the top side of the PCB. To shield and isolate the small signal traces from noisy power lines, insert at least one solid ground inner plane.
  • PVIN-to-PGND decoupling capacitors are important for FET robustness. Besides the large volume 0603 or 0805 ceramic capacitors, TI highly recommends a 0.1-µF 0402 ceramic capacitor with 25 V / X7R rating on PVIN pin 20 (top layer) to bypass any high frequency current in PVIN to PGND loop. The 25-V rating is recommended but can be lowered to 16-V rating for an application with tightly regulated 12-V input bus.
  • When one or more PVIN-to-PGND decoupling capacitors are placed on bottom layer, extra impedance is introduced to bypass IC PVIN node to IC PGND node. Placing at least 3 times PVIN vias on PVIN pad (formed by pin 20 to pin 24) and at least 9 times PGND vias on the thermal pad (underneath of the IC) is important to minimize the extra impedance for the bottom layer bypass capacitors.
  • Except the PGND vias underneath the thermal pad, at least 4 PGND vias are required to be placed as close as possible to the PGND pin 7 to pin 10. At least 2 PGND vias are required to be placed as close as possible to the PGND pin 19. Thisaction minimizes PGND bounces and also lowers thermal resistance.
  • Place the VCC/VDRV-to-PGND decoupling capacitor as close as possible to the device. TI recommends a2.2-µF/6.3-V/X7R/0603 or 4.7-µF/6.3-V/X6S/0603 ceramic capacitor. The voltage rating of this bypass capacitor must be at least 6.3 V but no more than 10 V to lower ESR and ESL. The recommended capacitor size is 0603 to minimize the capacitance drop due to DC bias effect. Ensure the VCC/VDRV to PGND decoupling loop is the smallest and ensure the routing trace is wide enough to lower impedance.
  • For remote sensing, the connections from the VOSNS/GOSNS pins to the remote location must be a pair of PCB traces with at least 12 mil trace width, and must implement Kelvin sensing across a high bypass capacitor of 0.1 μF or higher. The ground connection of the remote sensing signal must be connected to GOSNS pin. The VOUT connection of the remote sensing signal must be connected to the VOSNS pin. To maintain stable output voltage and minimize the ripple, the pair of remote sensing lines must stay away from any noise sources such as inductor and SW nodes, or high frequency clock lines. And TI recommends to shield the pair of remote sensing lines with ground planes above and below.
  • For single-end sensing, connect the VOSNS pin to a high-frequency local bypass capacitor of 0.1 μF or higher, and short GOSNS to AGND with shortest trace.
  • To minimize the impact from switching noise and achieve high accuracy on the input power monitoring feature, a PGND referenced bypass capacitor is required for each of VINSENP and VINSENM pins, with at least 100-pF volume and at least 25-V rating. These bypass capacitors must be placed close to VINSENP or VINSENM pin accordingly.
  • In a case that the input power feature is not used, follow below connection for pin 3 VINSENP and pin 4 VINSENM so that the device can report the input voltage level on PVIN node:
    1. Short pin 3 VINSENP to pin 4 VINSENM,
    2. Place a 0.1 µF ceramic bypass capacitor on pin 4 VINSENM referring to AGND,
    3. Connect pin 4 VINSENM to PVIN node of TPS544C26 device.
  • The AGND pin 32 must be connected to a solid PGND plane. TI recommends to place two AGND vias close to pin 32 to route AGND from top layer to bottom layer, and then connect the AGND trace to the PGND vias (underneath IC) through either a net-tie or a 0 Ω resistor on the bottom layer.
  • Connecting a resistor from pin 29 (I2C_ADDR) to AGND sets I2C address. It is required not to have any capacitor on pin 29. A capacitor on pin 29 likely leads to a wrong detection result for I2C address.
  • Pin 6 (DNC) is a Do-Not-Connect pin. Pin 6 can be shorted to pin 37, which is an NC pin (No internal Connection). Do not connect pin 6 to any other net including ground.