SBVS074M january   2007  – april 2023

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Pin Configuration and Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Electrical Characteristics: Other Orderable Devices (non-M3 Suffix)
    6. 6.6  Electrical Characteristics: Orderable Device with M3 suffix
    7. 6.7  Typical Characteristics: IOUT = 50 mA
    8. 6.8  Typical Characteristics: IOUT = 1 A
    9. 6.9  Typical Characteristics: IOUT = 50 mA (M3 Suffix)
    10. 6.10 Typical Characteristics: IOUT = 1 A (M3 Suffix)
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Enable/Shutdown
      2. 7.3.2 Power Good
      3. 7.3.3 Internal Current Limit
      4. 7.3.4 Thermal Protection
    4. 7.4 Device Functional Modes
      1. 7.4.1 Normal Operation
      2. 7.4.2 Dropout Operation
      3. 7.4.3 Disabled
    5. 7.5 Programming
      1. 7.5.1 Programmable Soft-Start
      2. 7.5.2 Sequencing Requirements
  8. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Adjusting the Output Voltage
      2. 8.1.2 Input, Output, and Bias Capacitor Requirements
      3. 8.1.3 Transient Response
      4. 8.1.4 Dropout Voltage
      5. 8.1.5 Output Noise
    2. 8.2 Typical Applications
      1. 8.2.1 FPGA I/O Supply at 1.5 V With a Bias Rail
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
        3. 8.2.1.3 Application Curves
      2. 8.2.2 FPGA I/O Supply at 1.5 V Without a Bias Rail
        1. 8.2.2.1 Design Requirements
        2. 8.2.2.2 Detailed Design Procedure
        3. 8.2.2.3 Application Curves
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
        1. 8.4.1.1 Estimating Junction Temperature
      2. 8.4.2 Layout Example
  9. Device and Documentation Support
    1. 9.1 Device Support
      1. 9.1.1 Development Support
        1. 9.1.1.1 Evaluation Modules
        2. 9.1.1.2 Spice Models
    2. 9.2 Documentation Support
      1. 9.2.1 Related Documentation
    3. 9.3 Receiving Notification of Documentation Updates
    4. 9.4 Support Resources
    5. 9.5 Trademarks
    6. 9.6 Electrostatic Discharge Caution
    7. 9.7 Glossary
  10. 10Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Detailed Design Procedure

First, determine what supplies to use for the input and bias rails. A 1.8-V input can be stepped down to 1.5 V at 1.5 A if an external bias is provided, because the maximum dropout voltage is 165 mV if VBIAS is at least 3.25 V higher than VOUT. To achieve this voltage step, the bias rail is supplied by the 5-V supply. The approximation in Equation 4 estimates the efficiency at 83.3%.

The output voltage then must be set to 1.5 V. As Table 8-1 describes, set R1 = 4.12 kΩ and R2= 4.75 kΩ to obtain the required output voltage. The minimum capacitor sizing is desired to reduce the total solution size footprint; see the Input, Output, and Bias Capacitor Requirements section for CIN = 1 µF, CBIAS = 1 µF, and COUT = 2.2 µF. Use CSS = 1 nF for a typical 1.8-ms start-up time.

Figure 8-2 shows a simplified version of the final circuit.