SLVSC76E February   2014  – May 2018 TPS92630-Q1

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Typical Application Schematic
  5. Revision History
  6. Description (Continued)
  7. Pin Configuration and Functions
    1.     Pin Functions
  8. Specifications
    1. 8.1 Absolute Maximum Ratings
    2. 8.2 ESD Ratings
    3. 8.3 Recommended Operating Conditions
    4. 8.4 Thermal Information
    5. 8.5 Electrical Characteristics
    6. 8.6 Timing Requirements
    7. 8.7 Typical Characteristics
  9. Parameter Measurement Information
  10. 10Detailed Description
    1. 10.1 Overview
    2. 10.2 Functional Block Diagram
    3. 10.3 Feature Description
      1. 10.3.1 Constant LED-Current Setting
      2. 10.3.2 PWM Control
      3. 10.3.3 FAULT Diagnostics
      4. 10.3.4 Short-Circuit Detection
      5. 10.3.5 Open-Load Detection
      6. 10.3.6 Thermal Foldback
    4. 10.4 Device Functional Modes
      1. 10.4.1 Thermal Information
      2. 10.4.2 Operation With V(VIN) < 5 V (Minimum V(VIN))
      3. 10.4.3 Operation With 5 V < V(VIN) < 9 V (Lower-Than-Normal Automotive Battery Voltage)
  11. 11Applications and Implementation
    1. 11.1 Application Information
    2. 11.2 Typical Applications
      1. 11.2.1 Stoplight and Taillight Application With PWM Generator
        1. 11.2.1.1 Design Requirements
        2. 11.2.1.2 Detailed Design Procedure
          1. 11.2.1.2.1 Step-by-Step Design Procedure
            1. 11.2.1.2.1.1 R(REF)
            2. 11.2.1.2.1.2 Duty Cycle
            3. 11.2.1.2.1.3 Input and Output Capacitors
        3. 11.2.1.3 PWM Dimming Application Curve
      2. 11.2.2 Simple Stop-Light and Taillight Application
        1. 11.2.2.1 Design Requirements
        2. 11.2.2.2 Detailed Design Procedure
          1. 11.2.2.2.1 Step-by-Step Design Procedure
            1. 11.2.2.2.1.1 R(REF)
            2. 11.2.2.2.1.2 R(Stop)
            3. 11.2.2.2.1.3 Input and Output Capacitors
      3. 11.2.3 Parallel Connection
        1. 11.2.3.1 Design Requirements
        2. 11.2.3.2 Detailed Design Procedure
          1. 11.2.3.2.1 Step-by-Step Design Procedure
            1. 11.2.3.2.1.1 R(REF)
            2. 11.2.3.2.1.2 Input and Output Capacitors
      4. 11.2.4 Alternate Parallel Connection
        1. 11.2.4.1 Design Requirements
        2. 11.2.4.2 Detailed Design Procedure
          1. 11.2.4.2.1 Step-by-Step Design Procedure
            1. 11.2.4.2.1.1 R(REF)
            2. 11.2.4.2.1.2 Input and Output Capacitors
      5. 11.2.5 High-Side PWM Dimming
        1. 11.2.5.1 Design Requirements
        2. 11.2.5.2 Detailed Design Procedure
          1. 11.2.5.2.1 Step-by-Step Design Procedure
            1. 11.2.5.2.1.1 Ratio of Resistors, R1 / R2
            2. 11.2.5.2.1.2 R1 and R2 Selection
            3. 11.2.5.2.1.3 Input and Output Capacitors
  12. 12Power Supply Recommendations
  13. 13Layout
    1. 13.1 Layout Guidelines
    2. 13.2 Layout Example
  14. 14Device and Documentation Support
    1. 14.1 Documentation Support
      1. 14.1.1 Related Documentation
    2. 14.2 Receiving Notification of Documentation Updates
    3. 14.3 Community Resources
    4. 14.4 Trademarks
    5. 14.5 Electrostatic Discharge Caution
    6. 14.6 Glossary
  15. 15Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Overview

The TPS92630-Q1 device is a three-channel constant-current regulator with individual PWM dimming, designed for high brightness red or white LEDs in automotive lighting applications. Each channel has up to 150-mA current capability, giving a combined 450-mA current capability when paralleled. The device provides excellent current matching between channels and devices. A high-side current source allows LED common-cathode connections. The advanced control loop allows high accuracy between channels, even when different numbers of LEDs are connected on the output. Use of a separate PWM channel dims or disables each channel.

The TPS92630-Q1 device monitors fault conditions on the output and reports its status on the FAULT and FAULT_S pins. It features single-shorted-LED detection, output short-to-ground detection, open-load detection, and thermal shutdown. Two separate fault pins allow maximum flexibility of fault-mode reporting to the MCU in case of an error. In case there is no MCU, one can connect multiple TPS92630-Q1 devices in a bus mode.

Integrated thermal foldback protects the devices from thermal shutdown by reducing the output current linearly when reaching a preset threshold. Use an external resistor to program the temperature foldback threshold. Tying the TEMP pin to ground disables this function.