SLLSEZ6D February   2019  – December 2023 TUSB216

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Switching Characteristics
    7. 6.7 Timing Requirements
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 High-Speed Boost
      2. 7.3.2 RX Sensitivity
    4. 7.4 Device Functional Modes
      1. 7.4.1 Low-Speed (LS) Mode
      2. 7.4.2 Full-Speed (FS) Mode
      3. 7.4.3 High-Speed (HS) Mode
      4. 7.4.4 High-Speed Downstream Port Electrical Compliance Test Mode
      5. 7.4.5 Shutdown Mode
      6. 7.4.6 I2C Mode
      7. 7.4.7 BC 1.2 Battery Charging Controller
    5. 7.5 TUSB216 Registers
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Test Procedure to Construct USB High-speed Eye Diagram
          1. 8.2.2.1.1 For a Host Side Application
          2. 8.2.2.1.2 For a Device Side Application
      3. 8.2.3 Application Curves
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Receiving Notification of Documentation Updates
    2. 9.2 Support Resources
    3. 9.3 Trademarks
    4. 9.4 Electrostatic Discharge Caution
    5. 9.5 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • RWB|12
Thermal pad, mechanical data (Package|Pins)
Orderable Information
For a Device Side Application
  1. Configure the TUSB216 to the desired BOOST setting
  2. Power on (or toggle the RSTN pin if already powered on) the TUSB216
  3. Connect a USB host, the USB-IF device-side test fixture, and USB device to the TUSB216. Ensure that the USB-IF device test fixture is configured to the ‘INIT’ position
  4. Allow the host to enumerate the device
  5. Enable the device to transmit USB TEST_PACKET
  6. Using SMA cables, connect the oscilloscope to the USB-IF device-side test fixture and ensure that the device-side test fixture is configured to the ‘TEST’ position.
  7. Execute the oscilloscope USB compliance software.
  8. Repeat the above steps in order to re-test TUSB216 with a different BOOST setting (must reset to change)