SLUSDA5B February   2018  – April 2024 UCC21222-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  ESD Ratings (Automotive)
    3. 5.3  Recommended Operating Conditions
    4. 5.4  Thermal Information
    5. 5.5  Power Ratings
    6. 5.6  Insulation Specifications
    7. 5.7  Safety Limiting Values
    8. 5.8  Electrical Characteristics
    9. 5.9  Switching Characteristics
    10. 5.10 Insulation Characteristics Curves
    11. 5.11 Typical Characteristics
  7. Parameter Measurement Information
    1. 6.1 Minimum Pulses
    2. 6.2 Propagation Delay and Pulse Width Distortion
    3. 6.3 Rising and Falling Time
    4. 6.4 Input and Disable Response Time
    5. 6.5 Programmable Dead Time
    6. 6.6 Power-Up UVLO Delay to OUTPUT
    7. 6.7 CMTI Testing
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 VDD, VCCI, and Undervoltage Lock Out (UVLO)
      2. 7.3.2 Input and Output Logic Table
      3. 7.3.3 Input Stage
      4. 7.3.4 Output Stage
      5. 7.3.5 Diode Structure in the UCC21222-Q1
    4. 7.4 Device Functional Modes
      1. 7.4.1 Disable Pin
      2. 7.4.2 Programmable Dead Time (DT) Pin
        1. 7.4.2.1 DT Pin Tied to VCCI or DT Pin Left Open
        2. 7.4.2.2 Connecting a Programming Resistor between DT and GND Pins
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1 Custom Design With WEBENCH® Tools
        2. 8.2.2.2 Designing INA/INB Input Filter
        3. 8.2.2.3 Select Dead Time Resistor and Capacitor
        4. 8.2.2.4 Select External Bootstrap Diode and its Series Resistor
        5. 8.2.2.5 Gate Driver Output Resistor
        6. 8.2.2.6 Estimating Gate Driver Power Loss
        7. 8.2.2.7 Estimating Junction Temperature
        8. 8.2.2.8 Selecting VCCI, VDDA/B Capacitor
          1. 8.2.2.8.1 Selecting a VCCI Capacitor
          2. 8.2.2.8.2 Selecting a VDDA (Bootstrap) Capacitor
          3. 8.2.2.8.3 Select a VDDB Capacitor
        9. 8.2.2.9 Application Circuits with Output Stage Negative Bias
      3. 8.2.3 Application Curves
  10. Power Supply Recommendations
  11. 10Layout
    1. 10.1 Layout Guidelines
      1. 10.1.1 Component Placement Considerations
      2. 10.1.2 Grounding Considerations
      3. 10.1.3 High-Voltage Considerations
      4. 10.1.4 Thermal Considerations
    2. 10.2 Layout Example
  12. 11Device and Documentation Support
    1. 11.1 Device Support
      1. 11.1.1 Third-Party Products Disclaimer
      2. 11.1.2 Development Support
        1. 11.1.2.1 Custom Design With WEBENCH® Tools
    2. 11.2 Documentation Support
      1. 11.2.1 Related Documentation
    3. 11.3 Receiving Notification of Documentation Updates
    4. 11.4 Support Resources
    5. 11.5 Trademarks
    6. 11.6 Electrostatic Discharge Caution
    7. 11.7 Glossary
  13. 12Revision History
  14. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Typical Characteristics

VDDA = VDDB= 15 V, VCCI = 3.3 V, TA = 25°C, No load unless otherwise noted.

GUID-20230607-SS0I-54JT-LPHD-QLSGKFHMR1C2-low.svg
Figure 5-4 Per Channel Current Consumption (IVDDA/B) vs Frequency (no load, VDD = 15V or 25V)
GUID-20230607-SS0I-LPWR-BM4P-Q8VLQ8MVZJJ2-low.svg
Figure 5-6 Per Channel Current Consumption (IVDDA/B) vs Frequency (10-nF load, VDD = 15V or 25V)
GUID-20230607-SS0I-MVBS-0MKC-LQF71P80JRCQ-low.svg
Figure 5-8 Per Channel (IVDDA/B) Quiescent Supply Current vs Temperature (no load, input low, no switching)
GUID-20230607-SS0I-QXHH-BHJH-HGZXPXXCKHLX-low.svg
Figure 5-10 Rising and Falling Times vs Load (VDD = 15V)
GUID-20230607-SS0I-65DG-ZBH1-FWLJDHGWN5CC-low.svg
Figure 5-12 Propagation Delay vs Temperature
GUID-20230607-SS0I-W3CJ-ZVDC-FF4XXRRNCVQT-low.svg
Figure 5-14 Pulse Width Distortion vs Temperature
GUID-20230607-SS0I-K8H3-VNFB-SGZHLF0JMXTX-low.svg
Figure 5-16 Propagation Delay Matching (tDM) vs Temperature
GUID-20231114-SS0I-G4FD-71L1-H69THRLGWCJJ-low.svg
Figure 5-18 VDD 8-V UVLO Hysteresis vs Temperature
GUID-20230607-SS0I-GQTZ-HNNR-7LFNJHCJLX9R-low.svg
Figure 5-20 IN/EN Low Threshold
GUID-20230607-SS0I-ZKHM-MBVQ-VRPS9C4GH0D7-low.svg
Figure 5-22 Dead Time vs Temperature (with RDT = 20kΩ and 100kΩ)
GUID-20221212-SS0I-GKQV-6JSP-DHWRBBSCQBV6-low.svg
Figure 5-24 Typical Output Waveforms
GUID-20230607-SS0I-6MWV-STXB-PG56JN4VPLK1-low.svg
Figure 5-5 Per Channel Current Consumption (IVDDA/B) vs Frequency (1-nF load, VDD = 15V or 25V)
GUID-20230607-SS0I-SXGN-P2MN-PMKH8XMHD0CW-low.svg
Figure 5-7 Per Channel (IVDDA/B) Supply Current vs Temperature (no load, different switching frequencies)
GUID-20230607-SS0I-NRS3-DDFG-7VP3QXFZB6NN-low.svg
Figure 5-9 IVCCI Quiescent Supply Current vs Temperature (no load, input low, no switching)
GUID-20230607-SS0I-5KG1-FR6R-FTLFG2VXBJT3-low.svg
Figure 5-11 Output Resistance vs Temperature
GUID-20230607-SS0I-MHZC-1ZMH-XTWXRVMRHRDM-low.svg
Figure 5-13 Propagation Delay vs VCCI
GUID-20230607-SS0I-NGGC-4ZPS-R8SG4CZ7ZWVD-low.svg
Figure 5-15 Propagation Delay Matching (tDM) vs VDD
GUID-20231114-SS0I-FDJZ-VHZL-MWHTSPVZPF6X-low.svg
Figure 5-17 VDD 8-V UVLO Threshold vs Temperature
GUID-20230607-SS0I-FWM1-2NMF-W2BVMXHRPPD7-low.svg
Figure 5-19 IN/EN Hysteresis vs Temperature
GUID-20230607-SS0I-PVSS-1LMW-ZVDBQ4C90Q0L-low.svg
Figure 5-21 IN/EN High Threshold
GUID-20230607-SS0I-GMFM-HMPW-LNPCJXHN9R4R-low.svg
Figure 5-23 Dead Time Matching vs Temperature (with RDT = 20kΩ and 100kΩ)