SLUSES3A October   2023  – December 2023 UCC25660

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Switching Characteristics
    7. 6.7 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Input Power Proportional Control
        1. 7.3.1.1 Voltage Feedforward
      2. 7.3.2 VCR Synthesizer
      3. 7.3.3 Feedback Chain (Control Input)
      4. 7.3.4 Adaptive Dead-Time
      5. 7.3.5 Input Voltage Sensing
        1. 7.3.5.1 Brown in and Brown out Tresholds and Options
        2. 7.3.5.2 Output OVP and External OTP
      6. 7.3.6 Resonant Tank Current Sensing
    4. 7.4 Protections
      1. 7.4.1 Zero Current Switching (ZCS) Protection
      2. 7.4.2 Minimum Current Turn-off During Soft Start
      3. 7.4.3 Cycle by Cycle Current Limit and Short Circuit Protection
      4. 7.4.4 Overload (OLP) Protection
      5. 7.4.5 VCC OVP Protection
    5. 7.5 Device Functional Modes
      1. 7.5.1 Startup
        1. 7.5.1.1 With HV Startup
        2. 7.5.1.2 Without HV Startup
      2. 7.5.2 Soft Start Ramp
        1. 7.5.2.1 Startup Transition to Regulation
      3. 7.5.3 Light Load Management
        1. 7.5.3.1 Operating Modes (Burst Pattern)
        2. 7.5.3.2 Mode Transition Management
        3. 7.5.3.3 Burst Mode Threshold Programming
        4. 7.5.3.4 PFC On/Off
      4. 7.5.4 X-Capacitor Discharge
        1. 7.5.4.1 Detecting Through HV Pin Only
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
      2. 8.2.2 Detailed Design Procedure
        1. 8.2.2.1  LLC Power Stage Requirements
        2. 8.2.2.2  LLC Gain Range
        3. 8.2.2.3  Select Ln and Qe
        4. 8.2.2.4  Determine Equivalent Load Resistance
        5. 8.2.2.5  Determine Component Parameters for LLC Resonant Circuit
        6. 8.2.2.6  LLC Primary-Side Currents
        7. 8.2.2.7  LLC Secondary-Side Currents
        8. 8.2.2.8  LLC Transformer
        9. 8.2.2.9  LLC Resonant Inductor
        10. 8.2.2.10 LLC Resonant Capacitor
        11. 8.2.2.11 LLC Primary-Side MOSFETs
        12. 8.2.2.12 Design Considerations for Adaptive Dead-Time
        13. 8.2.2.13 LLC Rectifier Diodes
        14. 8.2.2.14 LLC Output Capacitors
        15. 8.2.2.15 HV Pin Series Resistors
        16. 8.2.2.16 BLK Pin Voltage Divider
        17. 8.2.2.17 ISNS Pin Differentiator
        18. 8.2.2.18 TSET Pin
        19. 8.2.2.19 OVP/OTP Pin
        20. 8.2.2.20 Burst Mode Programming
        21. 8.2.2.21 Application Curves
    3. 8.3 Power Supply Recommendations
      1. 8.3.1 VCCP Pin Capacitor
      2. 8.3.2 Boot Capacitor
      3. 8.3.3 V5P Pin Capacitor
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Example
        1. 8.4.2.1 Schematics
        2. 8.4.2.2 Schematics
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

BLK Pin Voltage Divider

BLK pin senses the LLC DC input voltage and determines when to turn on and off the LLC converter. Also, BLK pin voltage is used for feedforward compensation.

The desired power consumption of the BLK pin resistor divider is PBLKsns = 15mW. The BLK sense resistor total value is given by:

Equation 50. R BLKsns = R BLKupper + R BLKlower = V IN nom 2 P BLKsns = 390 2 0.015 =10MΩ

Choose LLC startup voltage as 365V. Then VBLKStart related to VBLKStop, VBLKStartHys, IBLKSink as below:

Equation 51. V B L K S t a r t = 365 R B L K l o w e r R B L K u p p e r + R B L K l o w e r = V B L K S t o p + V B L K S t a r t H y s + I B L K s i n k R B L K u p p e r R B L K l o w e r R B L K u p p e r + R B L K l o w e r

For VBLKStop= 1V, VBLKStartHys= 0.1V, IBLKSink= 5 μ A , R B L K u p p e r and R B L K l o w e r are obtained as 10 M Ω and 35.4 k Ω respectively.

A standard value of 35.4kΩ is selected for RBLKlower and a standard value of 3x 3.3MΩ in series is selected for RBLKupper.

The actual startup voltage is given by

Equation 52. V B L K S t a r t R B L K u p p e r + R B L K l o w e r R B L K l o w e r = V B L K S t o p + V B L K S t a r t H y s + I B L K Sin k R B L K u p p e r R B L K l o w e r R B L K u p p e r + R B L K l o w e r R B L K u p p e r + R B L K l o w e r R B L K l o w e r = 358 V

The power consumption in BLK resistors are given by

Equation 53. P BLKsns = V IN nom 2 ( R BLKupper + R BLKlower ) = 390 2 (10MΩ+35.4kΩ) =15.3mW

The LLC turn off voltage is given by

Equation 54. V BLKStop R BLKupper + R BLKlower R BLKlower =280.6V