SLLSER8F June   2017  – January 2019 UCC5310 , UCC5320 , UCC5350 , UCC5390

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1. 3.1 Functional Block Diagram (S, E, and M Versions)
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Function
    1.     Pin Functions
  7. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  ESD Ratings
    3. 7.3  Recommended Operating Conditions
    4. 7.4  Thermal Information
    5. 7.5  Power Ratings
    6. 7.6  Insulation Specifications for D Package
    7. 7.7  Insulation Specifications for DWV Package
    8. 7.8  Safety-Related Certifications For D Package
    9. 7.9  Safety-Related Certifications For DWV Package
    10. 7.10 Safety Limiting Values
    11. 7.11 Electrical Characteristics
    12. 7.12 Switching Characteristics
    13. 7.13 Insulation Characteristics Curves
    14. 7.14 Typical Characteristics
  8. Parameter Measurement Information
    1. 8.1 Propagation Delay, Inverting, and Noninverting Configuration
      1. 8.1.1 CMTI Testing
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1 Power Supply
      2. 9.3.2 Input Stage
      3. 9.3.3 Output Stage
      4. 9.3.4 Protection Features
        1. 9.3.4.1 Undervoltage Lockout (UVLO)
        2. 9.3.4.2 Active Pulldown
        3. 9.3.4.3 Short-Circuit Clamping
        4. 9.3.4.4 Active Miller Clamp (UCC53x0M)
    4. 9.4 Device Functional Modes
      1. 9.4.1 ESD Structure
  10. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Application
      1. 10.2.1 Design Requirements
      2. 10.2.2 Detailed Design Procedure
        1. 10.2.2.1 Designing IN+ and IN– Input Filter
        2. 10.2.2.2 Gate-Driver Output Resistor
        3. 10.2.2.3 Estimate Gate-Driver Power Loss
        4. 10.2.2.4 Estimating Junction Temperature
      3. 10.2.3 Selecting VCC1 and VCC2 Capacitors
        1. 10.2.3.1 Selecting a VCC1 Capacitor
        2. 10.2.3.2 Selecting a VCC2 Capacitor
        3. 10.2.3.3 Application Circuits With Output Stage Negative Bias
      4. 10.2.4 Application Curve
  11. 11Power Supply Recommendations
  12. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Example
    3. 12.3 PCB Material
  13. 13Device and Documentation Support
    1. 13.1 Documentation Support
      1. 13.1.1 Related Documentation
    2. 13.2 Certifications
    3. 13.3 Related Links
    4. 13.4 Receiving Notification of Documentation Updates
    5. 13.5 Community Resources
    6. 13.6 Trademarks
    7. 13.7 Electrostatic Discharge Caution
    8. 13.8 Glossary
  14. 14Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Safety Limiting Values

Safety limiting intends to minimize potential damage to the isolation barrier upon failure of input or output circuitry.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
D PACKAGE
IS Safety output supply current RθJA = 109.5°C/W, VCC2 = 15 V, TJ = 150°C, TA = 25°C, see Figure 1 Output side 73 mA
RθJA = 109.5°C/W, VCC2 = 30 V, TJ = 150°C, TA = 25°C, see Figure 1 Output side 36
PS Safety output supply power RθJA = 109.5°C/W, TJ = 150°C, TA = 25°C, see Figure 3 Input side 0.05 W
Output side 1.09
Total 1.14
TS Maximum safety temperature(1) 150 °C
DWV PACKAGE
IS Safety input, output, or supply current RθJA = 119.8°C/W, VI = 15 V, TJ = 150°C, TA = 25°C, see Figure 2 Output side 66 mA
RθJA = 119.8°C/W, VI = 30 V, TJ = 150°C, TA = 25°C, see Figure 2 Output side 33
PS Safety input, output, or total power RθJA = 119.8°C/W, TJ = 150°C, TA = 25°C, see Figure 4 Input side 0.05 W
Output side 0.99
Total 1.04
TS Maximum safety temperature(1) 150 °C
The maximum safety temperature, TS, has the same value as the maximum junction temperature, TJ, specified for the device. The IS and PS parameters represent the safety current and safety power respectively. The maximum limits of IS and PS should not be exceeded. These limits vary with the ambient temperature, TA.
 
The junction-to-air thermal resistance, RθJA, in the Thermal Information table is that of a device installed on a high-K test board for leaded surface-mount packages. Use these equations to calculate the value for each parameter:
 
TJ = TA + RθJA × P, where P is the power dissipated in the device.
 
TJ(max) = TS = TA + RθJA × PS, where TJ(max) is the maximum allowed junction temperature.
 
PS = IS × VI, where VI is the maximum input voltage.