SLVSJ11 August   2025 UCC57132 , UCC57138

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Switching Characteristics
    7. 5.7 Timing Diagrams
    8. 5.8 Typical Characteristics
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1 Input Stage
      2. 6.3.2 Enable/Fault (EN/FLT)
      3. 6.3.3 Driver Stage
      4. 6.3.4 Overcurrent (OC) Protection
      5. 6.3.5 Thermal Shutdown
    4. 6.4 Device Functional Modes
  8. Applications and Implementation
    1. 7.1 Application Information
    2. 7.2 Typical Application
      1. 7.2.1 Driving MOSFET/IGBT/SiC MOSFET
        1. 7.2.1.1 Design Requirements
        2. 7.2.1.2 Detailed Design Procedure
          1. 7.2.1.2.1 VDD Undervoltage Lockout
          2. 7.2.1.2.2 Power Dissipation
        3. 7.2.1.3 Application Curves
    3. 7.3 Power Supply Recommendations
    4. 7.4 Layout
      1. 7.4.1 Layout Guidelines
      2. 7.4.2 Layout Example
      3. 7.4.3 Thermal Consideration
  9. Device and Documentation Support
    1. 8.1 Third-Party Products Disclaimer
    2. 8.2 Receiving Notification of Documentation Updates
    3. 8.3 Support Resources
    4. 8.4 Trademarks
    5. 8.5 Electrostatic Discharge Caution
    6. 8.6 Glossary
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • D|8
Thermal pad, mechanical data (Package|Pins)
Orderable Information
VDD Undervoltage Lockout

The UCC57132 device provides an undervoltage lockout threshold of 12V and the UCC57138 device provides an undervoltage lockout threshold of 8V. The device's hysteresis range helps to avoid any chattering due to the presence of noise on the bias supply. 1V of typical UVLO hysteresis is expected. There is no significant driver output turnon delay due to the UVLO feature, and 2μs of UVLO delay is expected. The UVLO turn-off delay is also minimized as much as possible. The UVLO delay is designed to minimize chattering that may occur due to very fast transients that may appear on VDD. When the bias supply is below UVLO thresholds, the outputs are held actively low irrespective of the state of the input pins. When exit the UVLO, the EN/FLT is charged by external pull up circuit. The fault clear time is depended on the time constant of the RFLTC and CFLTC. After exit the UVLO longer than the fault clear time the OUT follow the IN after the first raising edge of the IN.

UCC57132 UCC57138 UVLO
                    Timing DiagramFigure 7-2 UVLO Timing Diagram