SLUSB76B February   2013  – May 2015

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Description (continued)
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Typical Performance Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagrams
    3. 8.3 Feature Description
      1. 8.3.1  Input Voltage Protection
        1. 8.3.1.1 Input Overvoltage Protection
        2. 8.3.1.2 Bad Adaptor Detection/Rejection
        3. 8.3.1.3 Sleep Mode
        4. 8.3.1.4 Input Voltage Based DPM (Special Charger Voltage Threshold)
      2. 8.3.2  Battery Protection
        1. 8.3.2.1 Output Overvoltage Protection
        2. 8.3.2.2 Battery Short Protection
        3. 8.3.2.3 Battery Detection in HOST Mode
      3. 8.3.3  DEFAULT Mode
      4. 8.3.4  USB Friendly Power Up
      5. 8.3.5  Input Current Limiting at Power Up
      6. 8.3.6  Factory Mode
      7. 8.3.7  Spread Spectrum Mode
      8. 8.3.8  PWM Controller in Charge Mode
      9. 8.3.9  Battery Charging Process
      10. 8.3.10 Thermal Regulation and Protection
      11. 8.3.11 Charge Status Output, STAT Pin
      12. 8.3.12 Control Bits in Charge Mode
        1. 8.3.12.1 CE Bit (Charge Mode)
        2. 8.3.12.2 RESET Bit
        3. 8.3.12.3 OPA_MODE Bit
      13. 8.3.13 Control Pins in Charge Mode
        1. 8.3.13.1 CD Pin (Charge Disable)
      14. 8.3.14 Boost Mode Operation
        1. 8.3.14.1 PWM Controller in Boost Mode
        2. 8.3.14.2 Boost Start Up
        3. 8.3.14.3 PFM Mode at Light Load
        4. 8.3.14.4 Protection in Boost Mode
          1. 8.3.14.4.1 Output Overvoltage Protection
          2. 8.3.14.4.2 Output Overload Protection
          3. 8.3.14.4.3 Battery Overvoltage Protection
        5. 8.3.14.5 STAT Pin in Boost Mode
      15. 8.3.15 High Impedance (Hi-Z) Mode
      16. 8.3.16 Serial Interface Description
        1. 8.3.16.1 F/S Mode Protocol
        2. 8.3.16.2 HS Mode Protocol
        3. 8.3.16.3 I2C Update Sequence
        4. 8.3.16.4 Slave Address Byte
        5. 8.3.16.5 Register Address Byte
    4. 8.4 Device Functional Modes
      1. 8.4.1 Charge Mode Operation
        1. 8.4.1.1 Charge Profile
    5. 8.5 Register Maps
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Charge Current Sensing Resistor Selection Guidelines
        2. 9.2.2.2 Output Inductor and Capacitance Selection Guidelines
      3. 9.2.3 Application Curves
  10. 10Power Supply Recommendations
    1. 10.1 System Load After Sensing Resistor
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Third-Party Products Disclaimer
    2. 12.2 Documentation Support
      1. 12.2.1 Related Documentation
    3. 12.3 Trademarks
    4. 12.4 Electrostatic Discharge Caution
    5. 12.5 Glossary
  13. 13Mechanical, Packaging, and Orderable Information
    1. 13.1 Package Summary
      1. 13.1.1 Chip Scale Packaging Dimensions

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

7 Specifications

7.1 Absolute Maximum Ratings(1)(2)

over operating free-air temperature (unless otherwise noted)
MIN MAX UNIT
Supply voltage (with respect to PGND(3)) VBUS; VPMID ≥ VBUS – 0.3 V –2 20 V
Input voltage (with respect to PGND(3)) SCL, SDA, OTG, SLRST, CSIN, CSOUT, CD –0.3 7 V
Output voltage (with respect to PGND(3)) PMID, STAT –0.3 20 V
VREF -0.3 7 V
SW, BOOT –0.7 20 V
Voltage difference between CSIN and CSOUT inputs (V(CSIN) – V(CSOUT)) ±7 V
Voltage difference between BOOT and SW inputs (V(BOOT) – V(SW)) –0.3 7 V
Voltage difference between VBUS and PMID inputs (V(VBUS) – V(PMID)) –7 0.7 V
Voltage difference between PMID and SW inputs (V(PMID) – V(SW)) –0.7 20 V
Output sink STAT 10 10 mA
Output current (average) SW 1.55(2) A
TA Operating free-air temperature range –30 85 °C
Tstg Storage temperature range –45 150 °C
TJ Junction temperature –40 125 °C
(1) Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability. All voltage values are with respect to the network ground terminal unless otherwise noted.
(2) Duty cycle for output current should be less than 50% for 10-year lifetime when output current is above 1.5 A.
(3) All voltages are with respect to PGND if not specified. Currents are positive into, negative out of the specified terminal, if not specified. For thermal limitations and considerations of packages, see Thermal Information.

7.2 ESD Ratings

MIN MAX UNIT
V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1) 0 2000 V
Charged device model (CDM), per JEDEC specification JESD22-C101, all pins(2) 0 500
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

MIN NOM MAX UNIT
VBUS Supply voltage, bq24157S 4 6(1) V
TJ Operating junction temperature range –40 125 °C
(1) The inherent switching noise voltage spikes should not exceed the absolute maximum rating on either the BOOST or SW pins. A tight layout minimizes switching noise.

7.4 Thermal Information

THERMAL METRIC(1) bq24157S UNIT
YFF (20 PINS)
RθJA Junction-to-ambient thermal resistance 85 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 25
RθJB Junction-to-board thermal resistance 55
ψJT Junction-to-top characterization parameter 4
ψJB Junction-to-board characterization parameter 50
RθJC(bot) Junction-to-case (bottom) thermal resistance N/A
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

7.5 Electrical Characteristics

Circuit of Figure 28, VBUS = 5 V, HZ_MODE = 0, OPA_MODE = 0 (CD = 0), TJ = –40°C to 125°C, TJ = 25°C for typical values (unless otherwise noted)
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
INPUT CURRENTS
I(VBUS) VBUS supply current control VBUS > VBUS(min), PWM switching 10 mA
VBUS > VBUS(min), PWM not switching 5
0°C < TJ < 85°C, CD = 1 or HZ_MODE = 1 15 23 μA
Ilgk Leakage current from battery to VBUS pin 0°C < TJ < 85°C, V(CSOUT) = 4.2 V, high impedance mode, VBUS = 0 V 5 μA
Battery discharge current in high impedance mode, (CSIN, CSOUT, SW pins) 0°C < TJ < 85°C, V(CSOUT) = 4.2 V, high impedance mode, V = 0 V, SCL, SDA, OTG = 0 V or 1.8 V 23 μA
VOLTAGE REGULATION
V(OREG) Output regulation voltage programable range Operating in voltage regulation, programmable 3.5 4.44 V
Voltage regulation accuracy TA = 25°C –0.5% 0.5%
TA = -40°C to 125°C –1% 1%
CURRENT REGULATION (FAST CHARGE)
IO(CHARGE) Output charge current programmable range V(LOWV) ≤ V(CSOUT) < V(OREG),
VBUS > V(SLP), R(SNS) = 68 mΩ, LOW_CHG = 0, Programmable
550 1250 mA
Low charge current (default after POR in 15 min mode) VLOWV ≤ VCSOUT < VOREG, VBUS > VSLP,
RSNS= 68 mΩ, LOW_CHG = 1, OTG = High
325 350 mA
VLOWV ≤ VCSOUT < VOREG, VBUS > VSLP,
RSNS= 68 mΩ, LOW_CHG = 0, OTG = High
550 569
Regulation accuracy of the voltage across R(SNS) (for charge current regulation)
V(IREG) = IO(CHARGE) × R(SNS)
37.4 mV ≤ V(IREG)< 44.2 mV –3.5% 3.5%
44.2 mV ≤ V(IREG) –3% 3%
WEAK BATTERY DETECTION
V(LOWV) Weak battery voltage threshold programmable range2(2) Adjustable using I2C control 3.4 3.7 V
Weak battery voltage accuracy –5% 5%
Hysteresis for V(LOWV) Battery voltage falling 100 mV
Deglitch time for weak battery threshold Rising voltage, 2-mV overdrive, tRISE = 100 ns 30 ms
CD, OTG, AND SLRST PIN LOGIC LEVEL
VIL Input low threshold level 0.4 V
VIH Input high threshold level 1.3 V
I(bias) Input bias current Voltage on control pin is 5 V 1.0 µA
CHARGE TERMINATION DETECTION
I(TERM) Termination charge current programmable range V(CSOUT) > V(OREG) – V(RCH),
VBUS > V(SLP), R(SNS) = 68 mΩ, programmable
50 400 mA
Deglitch time for charge termination Both rising and falling, 2-mV overdrive,
tRISE, tFALL = 100 ns
30 ms
Regulation accuracy for termination current across R(SNS)
V(IREG_TERM) = IO(TERM) × R(SNS)
3.4 mV ≤ V(IREG_TERM) ≤ 6.8 mV –15% 15%
6.8 mV < V(IREG_TERM) ≤ 17 mV –10% 10%
17 mV < V(IREG_TERM) ≤ 27.2 mV –5.5% 5.5%
BAD ADAPTOR DETECTION
VIN(min) Input voltage lower limit Bad adaptor detection 3.6 3.8 4.0 V
Deglitch time for VBUS rising above VIN(min) Rising voltage, 2-mV overdrive, tRISE = 100 ns 30 ms
Hysteresis for VIN(min) Input voltage rising 100 200 mV
ISHORT Current source to GND During bad adaptor detection 20 30 40 mA
tINT Detection Interval Input power source detection 2 s
INPUT BASED DYNAMIC POWER MANAGEMENT
VIN_DPM Input Voltage DPM threshold programmable range 4.2 4.76 V
VIN DPM threshold accuracy –3% 1%
INPUT CURRENT LIMITING
IIN_LIMIT Input current limiting threshold IIN = 100 mA TJ = 0°C to 125°C 88 93 98 mA
TJ = –40°C to 125°C 86 93 98
IIN = 500 mA TJ = 0°C to 125°C 450 475 500 mA
TJ = –40°C to 125°C 440 475 500
VREF BIAS REGULATOR
VREF Internal bias regulator voltage VBUS > VIN(min) or V(CSOUT) > VBUS(min),
I(VREF) = 1 mA, C(VREF) = 1 μF
2 6.5 V
VREF output short current limit 30 mA
BATTERY RECHARGE THRESHOLD
V(RCH) Recharge threshold voltage Below V(OREG) 100 120 150 mV
Deglitch time V(SCOUT) decreasing below threshold,
tFALL = 100 ns, 10-mV overdrive
130 ms
STAT OUTPUTS
VOL(STAT) Low-level output saturation voltage, STAT pin IO = 10 mA, sink current 0.55 V
High-level leakage current for STAT Voltage on STAT pin is 5 V 1 μA
I2C BUS LOGIC LEVELS AND TIMING CHARACTERISTICS
VOL Output low threshold level IO = 10 mA, sink current 0.4 V
VIL Input low threshold level V(pullup) = 1.8 V, SDA and SCL 0.4 V
VIH Input high threshold level V(pullup) = 1.8 V, SDA and SCL 1.2 V
I(BIAS) Input bias current V(pullup) = 1.8 V, SDA and SCL 1 μA
f(SCL) SCL clock frequency 3.4 MHz
BATTERY DETECTION
I(DETECT) Battery detection current before charge done (sink current) (1) Begins after termination detected,
V(CSOUT) ≤ V(OREG)
–0.5 mA
tDETECT Battery detection time 262 ms
SLEEP COMPARATOR
V(SLP) Sleep-mode entry threshold,
VBUS – VCSOUT
2.3 V ≤ V(CSOUT) ≤ V(OREG), VBUS falling 0 40 100 mV
V(SLP_EXIT) Sleep-mode exit hysteresis 2.3 V ≤ V(CSOUT) ≤ V(OREG) 140 200 260 mV
Deglitch time for VBUS rising above V(SLP) + V(SLP_EXIT) Rising voltage, 2-mV overdrive, tRISE = 100 ns 30 ms
UNDERVOLTAGE LOCKOUT (UVLO)
UVLO IC active threshold voltage VBUS rising – exits UVLO 3.05 3.3 3.55 V
UVLO(HYS) IC active hysteresis VBUS falling below UVLO – enters UVLO 120 150 mV
Power up delay 140 ms
PWM
Voltage from BOOT pin to SW pin During charge or boost operation 6.5 V
Internal top reverse blocking MOSFET on-resistance IIN(LIMIT) = 500 mA, measured from VBUS to PMID 180 250
Internal top N-channel switching MOSFET on-resistance Measured from PMID to SW,
VBOOT – VSW= 4 V
120 250
Internal bottom N-channel MOSFET on-resistance Measured from SW to PGND 110 210
f(OSC) Oscillator frequency 3.0 MHz
Frequency accuracy –10% 10%
D(MAX) Maximum duty cycle 99.5%
D(MIN) Minimum duty cycle 0
Synchronous mode to non-synchronous mode transition current threshold(1) Low-side MOSFET cycle-by-cycle current sensing 100 mA
CHARGE MODE PROTECTION
VOVP_IN_USB Input VBUS OVP threshold voltage VBUS threshold to turn off converter during charge 6.3 6.5 6.7 V
VOVP Output OVP threshold voltage V(CSOUT) threshold over V(OREG) to turn off charger during charge 110 117 121 %VOREG
V(OVP) hysteresis Lower limit for V(CSOUT) falling from above V(OVP) 11
ILIMIT Cycle-by-cycle current limit for charge Charge mode operation 1.8 2.4 3.0 A
VSHORT Trickle to fast charge threshold V(CSOUT) rising 2.0 2.1 2.2 V
VSHORT hysteresis V(CSOUT) falling below VSHORT 100 mV
ISHORT Trickle charge charging current V(CSOUT) ≤ VSHORT) 20 30 40 mA
BOOST MODE OPERATION FOR VBUS (OPA_MODE = 1, HZ_MODE = 0)
VBUS_B Boost output voltage (to VBUS pin) 2.5 V < V(CSOUT) < 4.5 V 5.05 V
Boost output voltage accuracy Including line and load regulation –3% 3%
IBO Maximum output current for boost VBUS_B = 5.05 V, 3.3 V < V(CSOUT) < 4.5 V,
TJ= 0°C – 125°C
350 mA
IBLIMIT Cycle by cycle current limit for boost VBUS_B = 5.05 V, 2.5 V < V(CSOUT) < 4.5 V 1.0 A
VBUSOVP Overvoltage protection threshold for boost
(VBUS pin)
Threshold over VBUS to turn off converter during boost 5.8 6.0 6.2 V
VBUSOVP hysteresis VBUS falling from above VBUSOVP 162 mV
VBATMAX Maximum battery voltage for boost
(CSOUT pin)
V(CSOUT) rising edge during boost 4.75 4.9 5.05 V
VBATMAX hysteresis V(CSOUT) falling from above VBATMAX 200 mV
VBATMIN Minimum battery voltage for boost
(CSOUT pin)
During boosting 2.5 V
Before boost starts 2.9 3.05 V
Boost output resistance at high-impedance mode (from VBUS to PGND) CD = 1 or HZ_MODE = 1 217
PROTECTION
TSHTDWN) Thermal trip 165 °C
Thermal hysteresis 10
TCF Thermal regulation threshold Charge current begins to reduce 120
(1) Bottom N-channel FET always turns on for approximately 30 ns, and then turns off if current is too low.
(2) While in DEFAULT mode, if a battery that is charged to a voltage higher than this voltage is inserted, the charger enters Hi-Z mode and awaits I2C commands.

7.6 Typical Performance Characteristics

Using circuit shown in Figure 28, TA = 25°C, unless otherwise specified.
bq24157S figure4_slusb60.gif
VBUS = 5 V VBAT = 3.5 V
Figure 1. Cycle by Cycle Current Limiting In Charge Mode Overload Operation
bq24157S pwrup_158_lusa27.gif
VBUS = 5 V No Battery Connected
Termination Disabled
Figure 3. Power Up in DEFAULT Mode
bq24157S G001_slusb76.gif
OTG Control, DEFAULT Mode: VBUS = 5 V, VBAT = 3.1 V,
IIN_limit = 100 and 500 mA
I2C Control, HOST Mode: IIN_limit = 100 mA
Figure 5. Input Current Control
bq24157S eff1_cur_LUSB60.gif
Figure 7. Charger Efficiency
bq24157S figure15_slusb60.gif
VBUS = 5.05 V VBAT = 3.5 V
ILOAD (at VBUS) = 5 to 450 mA
Figure 9. VBUS Overload Waveforms (Boost Mode)
bq24157S stp1_up_res_lusa27.gif
VBUS = 5.05 V VBAT = 3.5 V IBUS = 0 to 217 mA
Figure 11. Load Step Up Response (Boost Mode)
bq24157S eff1_ld_lusa27.gif
Figure 13. Boost Efficiency
bq24157S vbus_ld_lusa27.gif
Figure 15. Load Regulation for Boost
bq24157S figure9_slusb60.gif
VIN = 5 V VBAT = 3.2 V ICHG = 950 mA
Figure 2. Charge Current Ramp Up
No Input Current Limit
bq24157S sour1_det_lusa27.gif
VBUS = 5 V at 8 mA VBAT = 3.2 V IIN_limit = 100 mA
ICHG = 550 mA
Figure 4. Poor Source Detection
bq24157S figure11_slusb60.gif
VBUS = 5 V at 500 mA VBAT = 3.5 V ICHG = 1550 mA
VIN_DPM = 4.52 V
Figure 6. VIN Based DPM
bq24157S figure14_slusb60.gif
VBUS = 5.05 V VBAT = 3.5 V IBUS = 42 mA
Figure 8. Boost Waveform (PFM Mode)
bq24157S load_stepup-resp_boost_lusax5.gif
VBUS = 5.05 V VBAT = 3.5 V IBUS = 0 to 360 mA
Figure 10. Load Step Up Response (Boost Mode)
bq24157S figure20_slusb60.gif
VBUS = 4.5 V (Charge Mode) VBUS = 5.1 V (Boost Mode)
VBAT = 3.5 V, IIN_LIM = 500 mA, (HOST Mode)
Figure 12. Boost to Charge Mode Transition (OTG Control)
bq24157S Line-reg_boost_lusax5.gif
Figure 14. Line Regulation For Boost
bq24157S figure25_slusb60.gif
ICHG = 1.2 A
Figure 16. Output Ripple for Voltage and Current