JAJSM96 may   2023 DRV8849

PRODUCTION DATA  

  1.   1
  2. 特長
  3. アプリケーション
  4. 概要
  5. Revision History
  6. Device Comparison
  7. Pin Configuration and Functions
  8. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Indexer Timing Requirements
    7. 7.7 Typical Operating Characteristics
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Stepper Motor Driver Current Ratings
        1. 8.3.1.1 Peak Current Rating
        2. 8.3.1.2 RMS Current Rating
        3. 8.3.1.3 Full-Scale Current Rating
      2. 8.3.2 Microstepping Indexer
      3. 8.3.3 Controlling VREF with an MCU DAC
      4. 8.3.4 Current Regulation and Decay Modes
        1. 8.3.4.1 Smart tune Ripple Control
        2. 8.3.4.2 Smart tune Dynamic Decay
        3. 8.3.4.3 Blanking time
      5. 8.3.5 Charge Pump
      6. 8.3.6 Logic Level, tri-level and quad-level Pin Diagrams
      7. 8.3.7 nFAULT Pins
      8. 8.3.8 Protection Circuits
        1. 8.3.8.1 VM Undervoltage Lockout (UVLO)
        2. 8.3.8.2 VCP Undervoltage Lockout (CPUV)
        3. 8.3.8.3 Overcurrent Protection (OCP)
          1. 8.3.8.3.1 Latched Shutdown
          2. 8.3.8.3.2 Automatic Retry
        4. 8.3.8.4 Thermal Shutdown (OTSD)
          1. 8.3.8.4.1 Latched Shutdown
          2. 8.3.8.4.2 Automatic Retry
        5. 8.3.8.5 Fault Condition Summary
    4. 8.4 Device Functional Modes
      1. 8.4.1 Sleep Mode (nSLEEP = 0)
      2. 8.4.2 Disable Mode (nSLEEP = 1, ENABLE = 0)
      3. 8.4.3 Operating Mode (nSLEEP = 1, ENABLE = Hi-Z/1)
      4. 8.4.4 nSLEEP Reset Pulse
      5. 8.4.5 Functional Modes Summary
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Stepper Motor Speed
        2. 9.2.2.2 Current Regulation
        3. 9.2.2.3 Decay Modes
        4. 9.2.2.4 Application Curves
  11. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Bulk Capacitance
  12. 11デバイスおよびドキュメントのサポート
    1. 11.1 関連資料
  13. 12Mechanical, Packaging, and Orderable Information

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

Overview

The DRV8849 is an integrated motor-driver solution for driving two bipolar stepper motors. The device provides the maximum integration by integrating four N-channel power MOSFET H-bridges, current sense resistors and regulation circuitry, and one microstepping indexer for each stepper. The DRV8849 is capable of supporting wide supply voltage of 4.5 to 38 V. The device provides an output current up to 2.5-A peak, 1.5-A full-scale, or 1.1-A root mean square (rms) on each output. The actual full-scale and rms current depends on the ambient temperature, supply voltage, and PCB thermal capability.

The DRV8849 uses an integrated current-sense architecture which eliminates the need for four external power sense resistors, hence saving significant board space, BOM cost, design efforts and reduces significant power consumption. This architecture removes the power dissipated in the sense resistors by using a current mirror approach and using the internal power MOSFETs for current sensing. The current regulation set point is adjusted by the voltage at the VREF pins.

A simple STEP/DIR interface allows for an external controller to manage the direction and step rate of the stepper motor. The internal microstepping indexer can execute high-accuracy micro-stepping without requiring the external controller to manage the winding current level. The indexer is capable of full step, half step, and 1/4, 1/8, 1/16, 1/32, 1/64, 1/128, and 1/256 microstepping. High microstepping contributes to significant audible noise reduction and smooth motion. In addition to a standard half stepping mode, a noncircular half stepping mode is available for increased torque output at higher motor RPM.

Stepper motor drivers need to re-circulate the winding current by implementing several types of decay modes, like slow decay, mixed decay and fast decay. The DRV8426 comes with smart tune decay modes. The smart tune is an innovative decay mechanism that automatically adjusts for optimal current regulation performance agnostic of voltage, motor speed, variation and aging effects. Smart tune Ripple Control uses a variable off-time, ripple current control scheme to minimize distortion of the motor winding current. Smart tune Dynamic Decay uses a fixed off-time, dynamic fast decay percentage scheme to minimize distortion of the motor winding current while minimizing frequency content and significantly reducing design efforts.

A low-power sleep mode is included which allows the system to save power when not actively driving the motor.