SBOS275G June   2003  – December 2015 VCA810

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 High Grade DC Characteristics: VS = ±5 V (VCA810AID)
    7. 7.7 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Input and Output Range
      2. 8.3.2 Overdrive Recovery
      3. 8.3.3 Output Offset Error
      4. 8.3.4 Offset Adjustment
      5. 8.3.5 Gain Control
      6. 8.3.6 Gain Control and Teeple Point
      7. 8.3.7 Noise Performance
      8. 8.3.8 Input and ESD Protection
    4. 8.4 Device Functional Modes
  9. Applications and Implementation
    1. 9.1 Application Information
      1. 9.1.1 VCA810 Operation
      2. 9.1.2 Range-Finding TGC Amplifier
      3. 9.1.3 Wide-Range AGC Amplifier
      4. 9.1.4 Stabilized Wein-Bridge Oscillator
      5. 9.1.5 Low-Drift Wideband Log Amplifier
      6. 9.1.6 Voltage-Controlled Low-Pass Filter
      7. 9.1.7 Tunable Equalizer
      8. 9.1.8 Voltage-Controlled Band-Pass filter
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
      3. 9.2.3 Application Curve
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
      1. 11.2.1 Thermal Analysis
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Development Support
        1. 12.1.1.1 Demonstration Boards
        2. 12.1.1.2 Macromodels and Applications Support
    2. 12.2 Documentation Support
      1. 12.2.1 Related Documentation
    3. 12.3 Community Resources
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary

パッケージ・オプション

メカニカル・データ(パッケージ|ピン)
サーマルパッド・メカニカル・データ
発注情報

7 Specifications

7.1 Absolute Maximum Ratings

Over operating free-air temperature range, unless otherwise noted.(1)
MIN MAX UNIT
Power supply ±6.5 V
Internal power dissipation See Thermal Information
Differential input voltage ±VS V
Input common-mode voltage ±VS V
Junction temperature, TJ 150 °C
Storage temperature, Tstg –65 125 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

7.2 ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM), per ANSI/ESDA/JEDEC JS-001(1) ±2000 V
Charged-device model (CDM), per JEDEC specification JESD22-C101(2) ±1500
Machine Model (MM) ±200
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.
(2) JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN NOM MAX UNIT
Temperature –40 25 85 °C
Supply voltage ±4 ±5 ±5.5 V

7.4 Thermal Information

THERMAL METRIC(1) VCA810 UNIT
D (SOIC)
8 PINS
RθJA Junction-to-ambient thermal resistance 80 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 51 °C/W
RθJB Junction-to-board thermal resistance 45 °C/W
ψJT Junction-to-top characterization parameter 14 °C/W
ψJB Junction-to-board characterization parameter 45 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance n/a °C/W
(1) For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report, SPRA953.

7.5 Electrical Characteristics

At RL = 500 Ω and VIN = single-ended input on V+ with V− at ground, VS = ±5 V, unless otherwise noted.
PARAMETER TEST CONDITIONS TEST LEVEL(3) MIN TYP MAX UNIT
AC PERFORMANCE
Small-signal bandwidth (see Functional Block Diagram) −2 V ≤ VC ≤ 0 V TJ = 25°C 35 MHz
TJ = 25°C(1) B 30
TJ = 0°C to 70°C(2) 29
TJ = –40°C to 85°C(2) 29
Large-signal bandwidth VO = 2 VPP, −2 ≤ VC ≤ −1 TJ = 25°C B 35 MHz
TJ = 25°C(1) 30
TJ = 0°C to 70°C(2) 29
TJ = –40°C to 85°C(2) 29
Frequency response peaking VO < 500 mVPP, −2 V ≤ VC ≤ 0 V TJ = 25°C B 0.1 dB
TJ = 25°C(1) 0.5
TJ = 0°C to 70°C(2) 0.5
TJ = –40°C to 85°C(2) 0.5
Slew rate VO = 3.5-V step, −2 ≤ VC ≤ −1,
10% to 90%
TJ = 25°C B 350 V/μs
TJ = 25°C(1) 300
TJ = 0°C to 70°C(2) 300
TJ = –40°C to 85°C(2) 295
Settling time to 0.01% VO = 1-V step, −2 ≤ VC ≤ −1 TJ = 25°C B 30 ns
TJ = 25°C(1) 40
TJ = 0°C to 70°C(2) 41
TJ = –40°C to 85°C(2) 41
Rise-and-fall time VO = 1-V step, −2 ≤ VC ≤ −1 TJ = 25°C B 10 ns
TJ = 25°C(1) 12
TJ = 0°C to 70°C(2) 12.1
TJ = –40°C to 85°C(2) 12.1
Group delay G = 0 dB, VC= −1 V, f = 5 MHz,
VO = 500 mVPP
TJ = 25°C C 6.2 ns
Group delay variation VO < 500 mVPP, −2 V ≤ VC ≤ 0 V,
f = 5 MHz
TJ = 25°C C 3.5 ns
HD2 Second harmonic distortion VO = 1 VPP, f = 1 MHz,
VC = −1 V, G = 0 dB
TJ = 25°C B –71 dBc
TJ = 25°C(1) –51
TJ = 0°C to 70°C(2) –50
TJ = –40°C to 85°C(2) –49
HD3 Third harmonic distortion VO = 1 VPP, f = 1 MHz,
VC = −1 V, G = 0 dB
TJ = 25°C B −35 dBc
TJ = 25°C(1) –34
TJ = 0°C to 70°C(2) –32
TJ = –40°C to 85°C(2) –29
Input voltage noise VC = −2 V TJ = 25°C B 2.4 nV/√Hz
TJ = 25°C(1) 2.8
TJ = 0°C to 70°C(2) 3.4
TJ = –40°C to 85°C(2) 3.5
Input current noise −2 V ≤ VC ≤ 0 V TJ = 25°C B 1.4 pA/√Hz
TJ = 25°C(1) 1.8
TJ = 0°C to 70°C(2) 2
TJ = –40°C to 85°C(2) 2.1
Fully attenuated feedthrough f ≤ 1 MHz, VC > 200 mV TJ = 25°C B −80 dB
TJ = 25°C(1) −70
Overdrive recovery VIN = 2 V to 0 V, VC = −2 V,
G = 40 dB
TJ = 25°C B 100 ns
TJ = 25°C(1) 150
DC PERFORMANCE (Single-Ended or Differential Input)
Output offset voltage (both inputs grounded)(4) −2 V ≤ VC ≤ 0 V TJ = 25°C A ±4 mV
TJ = 25°C(1) ±22
TJ = 0°C to 70°C(2) ±30
TJ = –40°C to 85°C(2) ±32
Output offset voltage drift TJ = 0°C to 70°C(2) B ±125 V/°C
TJ = –40°C to 85°C(2) ±125
Input offset voltage(4) Both inputs grounded TJ = 25°C A ±0.1 mV
TJ = 25°C(1) ±0.25
TJ = 0°C to 70°C(2) ±0.3
TJ = –40°C to 85°C(2) ±0.35
input offset voltage drift TJ = 0°C to 70°C(2) B ±1 μV/°C
TJ = –40°C to 85°C(2) ±1.2
Input bias current −2 V ≤ VC ≤ 0 V TJ = 25°C A −6 μA
TJ = 25°C(1) –10
TJ = 0°C to 70°C(2) −12
TJ = –40°C to 85°C(2) −14
Input bias current drift TJ = 0°C to 70°C(2) B ±25 nA/°C
TJ = –40°C to 85°C(2) ±30
Input offset current −2 V ≤ VC ≤ 0 V TJ = 25°C A ±100 nA
TJ = 25°C(1) ±600
TJ = 0°C to 70°C(2) ±700
TJ = –40°C to 85°C(2) ±800
Input offset current drift TJ = 0°C to 70°C(2) B ±1.4 nA/°C
TJ = –40°C to 85°C(2) ±2.2
INPUT
Common-mode input range TJ = 25°C A ±2.4 V
TJ = 25°C(1) ±2.3
TJ = 0°C to 70°C(2) ±2.3
TJ = –40°C to 85°C(2) ±2.2
Common-mode rejection ratio VCM = 0.5 V, VC = −2 V, input-referred TJ = 25°C A 95 dB
TJ = 25°C(1) 85
TJ = 0°C to 70°C(2) 83
TJ = –40°C to 85°C(2) 80
Input impedance VCM = 0 V, single-ended TJ = 25°C C 1 || 1 MΩ || pF
VCM = 0 V, differential TJ = 25°C C > 10 || < 2 MΩ || pF
Differential input range(5) VC = 0 V, VCM = 0 V TJ = 25°C C 3 VPP
OUTPUT
Voltage output swing VC = −2 V, RL = 100 Ω TJ = 25°C A ±1.8 V
TJ = 25°C(1) ±1.7
TJ = 0°C to 70°C(2) ±1.4
TJ = –40°C to 85°C(2) ±1.3
VC = −2 V, RL = 100 Ω TJ = 25°C A ±1.7 V
TJ = 25°C(1) ±1.6
TJ = 0°C to 70°C(2) ±1.3
TJ = –40°C to 85°C(2) ±1.2
Output current VO = 0 V TJ = 25°C A ±60 mA
TJ = 25°C(1) ±40
TJ = 0°C to 70°C(2) ±35
TJ = –40°C to 85°C(2) ±32
Output short-circuit current VO = 0 V TJ = 25°C C ±120 mA
Output impedance VO = 0 V, f < 100 kHz TJ = 25°C C 0.2 Ω
GAIN CONTROL (VC, Pin 3, Single-Ended or Differential Input)
Specified gain range ΔVC / ΔdB = 25 mV/dB TJ = 25°C C ±40 dB
Maximum control voltage G = −40 dB TJ = 25°C C 0 V
Minimum control voltage G = 40 dB TJ = 25°C C –2 V
Gain accuracy −1.8 V ≤ VC ≤ −0.2 V TJ = 25°C A ±0.4 dB
TJ = 25°C(1) ±1.5
TJ = 0°C to 70°C(2) ±2.5
TJ = –40°C to 85°C(2) ±3.5
VC < −1.8 V, VC > −0.2 V TJ = 25°C A ±0.5 dB
TJ = 25°C(1) ±2.2
TJ = 0°C to 70°C(2) ±3.7
TJ = –40°C to 85°C(2) ±4.7
Gain drift −1.8 V ≤ VC ≤ −0.2 V TJ = 0°C to 70°C(2) B ±0.02 dB/°C
TJ = –40°C to 85°C(2) ±0.03
VC < −1.8 V, VC > −0.2 V TJ = 0°C to 70°C(2) B ±0.03 dB/°C
TJ = –40°C to 85°C(2) ±0.04
Gain control slope 25°C C –40 dB/V
Gain control linearity(6) −1.8 V ≤ VC ≤ 0 V TJ = 25°C A ±0.3 dB
TJ = 25°C(1) ±1
TJ = 0°C to 70°C(2) ±1.1
TJ = –40°C to 85°C(2) ±1.2
VC < −1.8 V TJ = 25°C A ±0.7 dB
TJ = 25°C(1) ±1.6
TJ = 0°C to 70°C(2) ±2.5
TJ = –40°C to 85°C(2) ±3.2
Gain control bandwidth TJ = 25°C B 25 MHz
TJ = 25°C(1) 20
TJ = 0°C to 70°C(2) 19
TJ = –40°C to 85°C(2) 19
Gain control slew rate 80-dB gain step TJ = 25°C C 900 dB/ns
Gain settling time 1%, 80-dB step TJ = 25°C C 0.8 μs
Input bias current VC = −1 V TJ = 25°C A –1.5 μA
TJ = 25°C(1) –3.5
TJ = 0°C to 70°C(2) –4.5
TJ = –40°C to 85°C(2) –8
Gain + power-supply rejection ratio VC = −2 V, G = 40 dB, +VS = 5 V ± 0.5 V TJ = 25°C A 0.5 dB/V
TJ = 25°C(1) 1.5
TJ = 0°C to 70°C(2) 1.8
TJ = –40°C to 85°C(2) 2
Gain – power-supply rejection ratio VC = −2 V, G = 40 dB,
–VS = –5 V ± 0.5 V
TJ = 25°C A 0.7 dB/V
TJ = 25°C(1) 1.5
TJ = 0°C to 70°C(2) 1.8
TJ = –40°C to 85°C(2) 2
POWER SUPPLY
Specified operating voltage TJ = 25°C(1) C ±5 V
Minimum operating voltage TJ = 25°C(1) A ±4 V
TJ = 0°C to 70°C(2) ±4
TJ = –40°C to 85°C(2) ±4
Maximum operating voltage TJ =25°C(1) A ±6 V
TJ = 0°C to 70°C(2) ±6
TJ = –40°C to 85°C(2) ±6
Positive maximum supply quiescent current +VS = 5 V, G = −40 dB TJ = 25°C A 10 mA
TJ = 25°C(1) 12.5
TJ = 0°C to 70°C(2) 12.6
TJ = –40°C to 85°C(2) 12.7
+VS = 5 V, G = 40 dB TJ = 25°C A 18 mA
TJ = 25°C(1) 20.5
TJ = 0°C to 70°C(2) 22
TJ = –40°C to 85°C(2) 22.3
Positive minimum supply quiescent current +VS = 5 V, G = –40 dB TJ = 25°C A 10 mA
TJ = 25°C(1) 7.5
TJ = 0°C to 70°C(2) 7.2
TJ = –40°C to 85°C(2) 7.1
+VS = 5 V, G = 40 dB TJ = 25°C A 18 mA
TJ = 25°C(1) 15.5
TJ = 0°C to 70°C(2) 14.5
TJ = –40°C to 85°C(2) 13.5
Negative maximum supply quiescent current(7) −VS = −5 V, G = −40 dB TJ = 25°C A 12 mA
TJ = 25°C(1) 14.5
TJ = 0°C to 70°C(2) 14.6
TJ = –40°C to 85°C(2) 14.7
−VS = −5 V, G = 40 dB TJ = 25°C A 20 mA
TJ = 25°C(1) 22.5
TJ = 0°C to 70°C(2) 24.5
TJ = –40°C to 85°C(2) 24.8
Negative minimum supply quiescent current(7) −VS = −5 V, G = −40 dB TJ = 25°C A 12 mA
TJ = 25°C(1) 9.5
TJ = 0°C to 70°C(2) 9.4
TJ = –40°C to 85°C(2) 9.3
−VS = −5 V, G = 40 dB TJ = 25°C A 20 mA
TJ = 25°C(1) 17.5
TJ = 0°C to 70°C(2) 16.5
TJ = –40°C to 85°C(2) 16
+PSRR Positive power-supply rejection ratio Input-referred, VC = −2 V TJ = 25°C A 90 dB
TJ = 25°C(1) 75
TJ = 0°C to 70°C(2) 75
TJ = –40°C to 85°C(2) 73
–PSRR Negative power-supply rejection ratio Input-referred, VC = −2 V TJ = 25°C A 85 dB
TJ = 25°C(1) 70
TJ = 0°C to 70°C(2) 70
TJ = –40°C to 85°C(2) 68
THERMAL CHARACTERISTICS
Specified operating range, ID package C –40 85 °C
(1) Junction temperature = ambient for 25°C tested specifications.
(2) Junction temperature = ambient at low temperature limit; junction temperature = ambient 30°C at high temperature limit for over temperature specifications.
(3) Test levels: (A) 100% tested at 25°C. Over temperature limits set by characterization and simulation. (B) Limits set by characterization and simulation. (C) Typical value; only for information.
(4) Total output offset is: (Output Offset Voltage ± Input Offset Voltage x Gain).
(5) Maximum input at minimum gain for < 1-dB gain compression.
(6) Maximum deviation from best line fit.
(7) Magnitude.

7.6 High Grade DC Characteristics: VS = ±5 V (VCA810AID)

At RL = 500 Ω and VIN = single-ended input on V+ with V− at ground, unless otherwise noted.
PARAMETER TEST CONDITIONS TEST LEVEL(3) MIN TYP MAX UNIT
DC PERFORMANCE (Single-Ended or Differential Input)
Output offset voltage −2 V < VC < 0 V TJ = 25°C A ±4 mV
TJ = 25°C(1) ±14
TJ = 0°C to 70°C(2) ±24
TJ = –40°C to 85°C(2) ±26
Input offset voltage TJ = 25°C A ±0.1 mV
TJ = 25°C(1) ±0.2
TJ = 0°C to 70°C(2) ±0.25
TJ = –40°C to 85°C(2) ±0.3
Input offset current TJ = 25°C A ±100 nA
TJ = 25°C(1) ±500
TJ = 0°C to 70°C(2) ±600
TJ = –40°C to 85°C(2) ±700
GAIN CONTROL (VC, Pin 3, Single-Ended or Differential Input)
Gain accuracy −1.8 V ≤ VC ≤ −0.2 V TJ = 25°C A ±0.4 dB
TJ = 25°C(1) ±0.9
TJ = 0°C to 70°C(2) ±1.9
TJ = –40°C to 85°C(2) ±2.9
VC < −1.8 V, VC > −0.2 V TJ = 25°C A ±0.5 dB
TJ = 25°C(1) ±1.5
TJ = 0°C to 70°C(2) ±3.0
TJ = –40°C to 85°C(2) ±4.0
Gain control linearity(1) −1.8 V ≤ VC ≤ 0 V TJ = 25°C A ±0.3 dB
TJ = 25°C(1) ±0.6
TJ = 0°C to 70°C(2) ±0.7
TJ = –40°C to 85°C(2) ±0.8
VC < −1.8 V TJ = 25°C A ±0.7 dB/V
TJ = 25°C(1) ±1.1
TJ = 0°C to 70°C(2) ±1.9
TJ = –40°C to 85°C(2) ±2.7
POWER SUPPLY
Positive maximum supply quiescent current +VS = 5 V, G = −40 dB TJ = 25°C A 10 mA
TJ = 25°C(1) 11.5
TJ = 0°C to 70°C(2) 11.6
TJ = –40°C to 85°C(2) 11.7
+VS = 5 V, G = 40 dB TJ = 25°C A 18 mA
TJ = 25°C(1) 19.5
TJ = 0°C to 70°C(2) 21
TJ = –40°C to 85°C(2) 21.3
Positive minimum supply quiescent current +VS = 5 V, G = −40 dB TJ = 25°C A 10 mA
TJ = 25°C(1) 8.5
TJ = 0°C to 70°C(2) 8.2
TJ = –40°C to 85°C(2) 8.1
+VS = 5 V, G = 40 dB TJ = 25°C A 18 mA
TJ = 25°C(1) 16.5
TJ = 0°C to 70°C(2) 15.5
TJ = –40°C to 85°C(2) 14.5
Negative maximum supply quiescent current(2) −VS = −5 V, G = −40 dB TJ = 25°C A 12 mA
TJ = 25°C(1) 14
TJ = 0°C to 70°C(2) 14.1
TJ = –40°C to 85°C(2) 14.2
−VS = −5 V, G = 40 dB TJ = 25°C A 20 mA
TJ = 25°C(1) 22
TJ = 0°C to 70°C(2) 24
TJ = –40°C to 85°C(2) 24.3
Negative minimum supply quiescent current(2) −VS = −5 V, G = −40 dB TJ = 25°C A 12 mA
TJ = 25°C(1) 10
TJ = 0°C to 70°C(2) 9.9
TJ = –40°C to 85°C(2) 9.8
−VS = −5 V, G = 40 dB TJ = 25°C A 20 mA
TJ = 25°C(1) 18
TJ = 0°C to 70°C(2) 17
TJ = –40°C to 85°C(2) 16.5
(1) Maximum deviation from best line fit.
(2) Magnitude.

7.7 Typical Characteristics

At RL = 500 Ω and VIN = single-ended input on V+ with V− at ground, VS = ±5 V, unless otherwise noted.
VCA810 tc_sm_sig_fqcy_resp_bos275.gif Figure 1. Small-Signal Frequency Response
VCA810 tc_pulse_resp_atten_bos275.gif Figure 3. Attenuated Pulse Response
VCA810 tc_pulse_resp_gain_ctrl_bos275.gif Figure 5. Gain Control Pulse Response
VCA810 tc_harm_dist_fqcy_bos275.gif Figure 7. Harmonic Distortion vs Frequency
VCA810 tc_harm_dist_vout_bos275.gif Figure 9. Harmonic Distortion vs Output Voltage
VCA810 tc_input_output_gain_bos275.gif Figure 11. Input, Output Range vs Gain
VCA810 tc_noise_density_vctrl_bos275.gif Figure 13. Noise Density vs Control Voltage
VCA810 tc_fully_atten_isolat_fqcy_bos275.gif Figure 15. Fully Attenuated Isolation vs Frequency
VCA810 tc_typ_gain_err_bos275.gif Figure 17. Typical Gain Error Plot
VCA810 tc_group_delay_gain_bos275.gif Figure 19. Group Delay vs Gain
VCA810 tc_overdrv_rec_max_gain_bos275.gif Figure 21. Overdrive Recovery at Maximum Gain
VCA810 tc_cmrr_psrr_gain_bos275.gif Figure 23. Common-Mode Rejection Ratio and
Power-Supply Rejection Ratio vs Gain
VCA810 tc_gain_ctrl_psrr_pos_bos275.gif Figure 25. Gain Control +PSRR at Max Gain
VCA810 tc_typ_drift_temp_bos275.gif Figure 27. Typical DC Drift vs Temperature
VCA810 tc_gain_ctrl_fqcy_resp_bos275.gif Figure 2. Gain Control Frequency Response
VCA810 tc_pulse_resp_hi_gain_bos275.gif Figure 4. High Gain Pulse Response
VCA810 tc_gain_vctrl_bos275.gif Figure 6. Gain vs Control Voltage
VCA810 tc_harm_dist_rload_bos275.gif Figure 8. Harmonic Distortion vs RLOAD
VCA810 tc_harm_dist_gain_bos275.gif Figure 10. Harmonic Distortion vs Gain
VCA810 tc_harm_dist_atten_bos275.gif Figure 12. Harmonic Distortion vs Attenuation
VCA810 tc_vin_inoise_bos275.gif Figure 14. Input Voltage and Current Noise
VCA810 tc_vout_offset_total_error_gain_bos275.gif Figure 16. Output Offset Voltage Total Error Band vs Gain
VCA810 tc_vout_offset_histo_bos275.gif Figure 18. Output Offset Voltage Distribution
VCA810 tc_group_delay_fqcy_bos275.gif Figure 20. Group Delay vs Frequency
VCA810 tc_overdrv_rec_max_atten_bos275.gif Figure 22. Overdrive Recovery at Maximum Attenuation
VCA810 tc_cmrr_psrr_fqcy_bos275.gif Figure 24. Common-Mode Rejection Ratio and
Power-Supply Rejection Ratio vs Frequency
VCA810 tc_gain_ctrl_psrr_neg_bos275.gif Figure 26. Gain Control −PSRR at Max Gain
VCA810 tc_isupply_vcntl_bos275.gif Figure 28. Typical Supply Current vs Control Voltage