JAJSEE2C January   2018  – December 2019 MSP430FR2512 , MSP430FR2522

PRODUCTION DATA.  

  1. 1デバイスの概要
    1. 1.1 特長
    2. 1.2 アプリケーション
    3. 1.3 概要
    4. 1.4 機能ブロック図
  2. 2改訂履歴
  3. 3Device Comparison
    1. 3.1 Related Products
  4. 4Terminal Configuration and Functions
    1. 4.1 Pin Diagrams
    2. 4.2 Pin Attributes
    3. 4.3 Signal Descriptions
    4. 4.4 Pin Multiplexing
    5. 4.5 Buffer Types
    6. 4.6 Connection of Unused Pins
  5. 5Specifications
    1. 5.1       Absolute Maximum Ratings
    2. 5.2       ESD Ratings
    3. 5.3       Recommended Operating Conditions
    4. 5.4       Active Mode Supply Current Into VCC Excluding External Current
    5. 5.5       Active Mode Supply Current Per MHz
    6. 5.6       Low-Power Mode (LPM0) Supply Currents Into VCC Excluding External Current
    7. 5.7       Low-Power Mode (LPM3, LPM4) Supply Currents (Into VCC) Excluding External Current
    8. 5.8       Low-Power Mode (LPMx.5) Supply Currents (Into VCC) Excluding External Current
    9. 5.9       Typical Characteristics - Low-Power Mode Supply Currents
    10. Table 5-1 Typical Characteristics – Current Consumption Per Module
    11. 5.10      Thermal Resistance Characteristics
    12. 5.11      Timing and Switching Characteristics
      1. 5.11.1  Power Supply Sequencing
        1. Table 5-2 PMM, SVS and BOR
      2. 5.11.2  Reset Timing
        1. Table 5-3 Wake-up Times From Low-Power Modes and Reset
      3. 5.11.3  Clock Specifications
        1. Table 5-4 XT1 Crystal Oscillator (Low Frequency)
        2. Table 5-5 DCO FLL, Frequency
        3. Table 5-6 DCO Frequency
        4. Table 5-7 REFO
        5. Table 5-8 Internal Very-Low-Power Low-Frequency Oscillator (VLO)
        6. Table 5-9 Module Oscillator (MODOSC)
      4. 5.11.4  Digital I/Os
        1. Table 5-10 Digital Inputs
        2. Table 5-11 Digital Outputs
        3. 5.11.4.1   Typical Characteristics – Outputs at 3 V and 2 V
      5. 5.11.5  VREF+ Built-in Reference
        1. Table 5-12 VREF+
      6. 5.11.6  Timer_A
        1. Table 5-13 Timer_A
      7. 5.11.7  eUSCI
        1. Table 5-14 eUSCI (UART Mode) Clock Frequency
        2. Table 5-15 eUSCI (UART Mode)
        3. Table 5-16 eUSCI (SPI Master Mode) Clock Frequency
        4. Table 5-17 eUSCI (SPI Master Mode)
        5. Table 5-18 eUSCI (SPI Slave Mode)
        6. Table 5-19 eUSCI (I2C Mode)
      8. 5.11.8  ADC
        1. Table 5-20 ADC, Power Supply and Input Range Conditions
        2. Table 5-21 ADC, 10-Bit Timing Parameters
        3. Table 5-22 ADC, 10-Bit Linearity Parameters
      9. 5.11.9  CapTIvate
        1. Table 5-23 CapTIvate Electrical Characteristics
        2. Table 5-24 CapTIvate Signal-to-Noise Ratio Characteristics
      10. 5.11.10 FRAM
        1. Table 5-25 FRAM
      11. 5.11.11 Debug and Emulation
        1. Table 5-26 JTAG, Spy-Bi-Wire Interface
        2. Table 5-27 JTAG, 4-Wire Interface
  6. 6Detailed Description
    1. 6.1  Overview
    2. 6.2  CPU
    3. 6.3  Operating Modes
    4. 6.4  Interrupt Vector Addresses
    5. 6.5  Bootloader (BSL)
    6. 6.6  JTAG Standard Interface
    7. 6.7  Spy-Bi-Wire Interface (SBW)
    8. 6.8  FRAM
    9. 6.9  Memory Protection
    10. 6.10 Peripherals
      1. 6.10.1  Power-Management Module (PMM)
      2. 6.10.2  Clock System (CS) and Clock Distribution
      3. 6.10.3  General-Purpose Input/Output Port (I/O)
      4. 6.10.4  Watchdog Timer (WDT)
      5. 6.10.5  System (SYS) Module
      6. 6.10.6  Cyclic Redundancy Check (CRC)
      7. 6.10.7  Enhanced Universal Serial Communication Interface (eUSCI_A0, eUSCI_B0)
      8. 6.10.8  Timers (Timer0_A3, Timer1_A3)
      9. 6.10.9  Hardware Multiplier (MPY)
      10. 6.10.10 Backup Memory (BAKMEM)
      11. 6.10.11 Real-Time Clock (RTC)
      12. 6.10.12 10-Bit Analog-to-Digital Converter (ADC)
      13. 6.10.13 CapTIvate Technology
      14. 6.10.14 Embedded Emulation Module (EEM)
    11. 6.11 Input/Output Diagrams
      1. 6.11.1 Port P1 (P1.0 to P1.7) Input/Output With Schmitt Trigger
      2. 6.11.2 Port P2 (P2.0 to P2.6) Input/Output With Schmitt Trigger
    12. 6.12 Device Descriptors
    13. 6.13 Memory
      1. 6.13.1 Memory Organization
      2. 6.13.2 Peripheral File Map
    14. 6.14 Identification
      1. 6.14.1 Revision Identification
      2. 6.14.2 Device Identification
      3. 6.14.3 JTAG Identification
  7. 7Applications, Implementation, and Layout
    1. 7.1 Device Connection and Layout Fundamentals
      1. 7.1.1 Power Supply Decoupling and Bulk Capacitors
      2. 7.1.2 External Oscillator
      3. 7.1.3 JTAG
      4. 7.1.4 Reset
      5. 7.1.5 Unused Pins
      6. 7.1.6 General Layout Recommendations
      7. 7.1.7 Do's and Don'ts
    2. 7.2 Peripheral- and Interface-Specific Design Information
      1. 7.2.1 ADC Peripheral
        1. 7.2.1.1 Partial Schematic
        2. 7.2.1.2 Design Requirements
        3. 7.2.1.3 Layout Guidelines
      2. 7.2.2 CapTIvate Peripheral
        1. 7.2.2.1 Device Connection and Layout Fundamentals
        2. 7.2.2.2 Measurements
          1. 7.2.2.2.1 SNR
          2. 7.2.2.2.2 Sensitivity
          3. 7.2.2.2.3 Power
    3. 7.3 CapTIvate Technology Evaluation
  8. 8デバイスおよびドキュメントのサポート
    1. 8.1  使い始めと次の手順
    2. 8.2  デバイスの項目表記
    3. 8.3  ツールとソフトウェア
    4. 8.4  ドキュメントのサポート
    5. 8.5  関連リンク
    6. 8.6  Community Resources
    7. 8.7  商標
    8. 8.8  静電気放電に関する注意事項
    9. 8.9  Export Control Notice
    10. 8.10 Glossary
  9. 9メカニカル、パッケージ、および注文情報

ツールとソフトウェア

これらのマイクロコントローラでサポートされているデバッグ機能の一覧を、Table 8-1に示します。利用可能な機能の詳細については、『Code Composer Studio™ v5.2 ユーザーズ・ガイド MSP430™ 版ユーザーズ・ガイド』を参照してください。

Table 8-1 ハードウェアの特長

MSP430のアーキテクチャ 4線式JTAG 2線式JTAG ブレーク・ポイント
(N)
範囲ブレーク・ポイント クロック制御 状態シーケンサ トレース・バッファ LPMx.5デバッグ・サポート EEMのバージョン
MSP430Xv2 3 × × × S

設計キットと評価基板

MSP-TS430RHL20 MSP430FR2x MCU用の20ピン・ターゲット開発ボード

MSP-TS430RHL20はスタンドアロンのZIFソケット・ターゲット・ボードで、JTAGインターフェイスまたはSpy Bi-Wire (2線式JTAG)プロトコルによるシステム内のMSP430のプログラムとデバッグに使用されます。この開発ボードは、20 ピンの VQFN パッケージ (TI パッケージ・コード: RHL) に封止された MSP430FR252x および MSP430FR242x のフラッシュ・パーツすべてをサポートしています。

MSP-FET + MSP-TS430RHL20 FRAMマイクロコントローラ開発キット・バンドル

MSP-FET430RHL20-BNDLバンドルは、MSP430FR2422マイクロコントローラ (例: MSP430FR2422RHL) 用の20ピンRHLパッケージをサポートする、2つのデバッグ・ツールを組み合わせたものです。これら2つのツールには、MSP-TS430RHL20とMSP-FETが含まれています。

ソフトウェア

MSP430Ware™ソフトウェア

MSP430Wareソフトウェアは、すべてのMSP430デバイス向けのサンプル・コード、データシート、その他の設計リソースを、1つの便利なパッケージとしてまとめたものです。既存のMSP430用設計リソースの完全なコレクションに加えて、MSP430WareソフトウェアにはMSP430ドライバ・ライブラリという高レベルのAPIも含まれています。このライブラリにより、MSP430ハードウェアを簡単にプログラムできます。MSP430WareソフトウェアはCCSのコンポーネントとして、またはスタンドアロンのパッケージとして入手できます。

MSP430FR2422のサンプル・コード

すべてのMSPデバイス用に、内蔵の各ペリフェラルをさまざまなアプリケーションの要求に応じて構成するためのCコード・サンプルが用意されています。

MSP ドライバ・ライブラリ

ドライバ・ライブラリの抽象化APIで、使いやすい関数呼び出しが用意されており、MSP430ハードウェアのビットやバイトのレベルを意識せずに、より高水準の開発作業に集中できます。使いやすいAPIガイドにより包括的な技術資料が参照でき、それぞれの関数呼び出しと、認識されるパラメータの詳細が記載されています。開発者は、ドライバ・ライブラリの関数を使用して、最小限のオーバーヘッドで完全なプロジェクトを作成できます。

MSP EnergyTrace™ テクノロジ

MSP430マイクロコントローラ用のEnergyTraceテクノロジは、エネルギーを基準としたコード解析ツールで、アプリケーションのエネルギー・プロファイルを測定して表示し、消費電力が極めて低くなるよう最適化するため役立ちます。

ULP (超低消費電力) Advisor

ULP Advisor™ソフトウェアは、MSPおよびMSP432マイクロコントローラ独自の超低消費電力機能を十分に活用できる、最も効率的なコードを開発者が作成できるよう手引きするツールです。ULP Advisorは、マイクロコントローラの熟練した開発者でも、新しい開発者でも使用でき、包括的なULPチェックリストと照らし合わせてコードのチェックを行い、アプリケーションの性能を最大限まで発揮できるようにします。ビルド時に、消費電力低減のためさらに最適化が可能なコードの部分を明らかにするため通知と注釈を出力します。

MSP超低消費電力マイクロコントローラ用FRAM組み込みソフトウェア・ユーティリティ

FRAMユーティリティは、組み込みソフトウェア・ユーティリティのコレクションとして成長するように設計されており、超低消費電力とほぼ無限の書き込み耐性というFRAMの特長を活用できます。このユーティリティはMSP430FRxx FRAMマイクロコントローラで利用でき、アプリケーション開発に役立つサンプル・コードを提供します。搭載されているユーティリティには、Compute Through Power Loss (CTPL)があります。CTPLはユーティリティAPIセットで、LPMx.5低消費電力モードにより使いやすさを実現する一方、強力なシャットダウン・モードにより、停電検出時にアプリケーションが重要なシステム・コンポーネントを保存・復元できます。

IEC60730 ソフトウェア・パッケージ

IEC60730 MSP430ソフトウェア・パッケージは、クラスBまでの製品について、お客様がIEC 60730-1:2010 (家庭および同様な用途に使用される自動電気制御 – 第1部: 一般的な要件)に準拠するため役立つよう開発されています。この分類には家電機器、アーク検出器、電力コンバータ、電動工具、電動アシスト自転車、その他多くの製品が含まれます。IEC60730 MSP430ソフトウェア・パッケージは、MSP430で実行するお客様のアプリケーションに組み込むことができるため、消費者向けデバイスがIEC 60730-1:2010クラスBの機能安全性に準拠していることの認定作業を簡素化できます。

MSP 用の固定小数点算術ライブラリ

MSP IQmathおよびQmathライブラリは、Cプログラマ向けの高度に最適化された高精度の算術関数のコレクションで、浮動小数点アルゴリズムをMSP430およびMSP432デバイスの固定小数点コードへシームレスに移行できます。これらのルーチンは通常、最適な実行速度、高精度、超低消費電力が重視される、演算集中型のリアルタイム・アプリケーションで使用されます。IQmathライブラリとQmathライブラリを使用すると、浮動小数点演算を使用して記述した同等のコードに比べて、実行速度を大幅に高速化するとともに、消費電力の大幅な削減が可能です。

MSP430用の浮動小数点算術ライブラリ

低消費電力かつ低コストのマイクロコントローラ分野で継続的な革新を行うため、TIはMSPMATHLIBを提供しています。このスカラー関数の浮動小数点数値演算ライブラリは、弊社デバイスのインテリジェントなペリフェラルを活用し、最高26倍の性能を実現します。Mathlibは、設計へ簡単に組み入れることができます。このライブラリは無償で、Code Composer Studio と IAR IDE の両方に組み込まれています。数値演算ライブラリと関連ベンチマークの詳細については、ユーザー・ガイドを参照してください。

開発ツール

Code Composer Studio™: MSPマイクロコントローラ用の統合開発環境

Code Composer Studio は、すべての MSP マイクロコントローラ・デバイスをサポートする統合開発環境 (IDE) です。Code Composer Studio は、組み込みアプリケーションの開発とデバッグに使用される、組み込み用ソフトウェア・ユーティリティのスイートです。最適化C/C++コンパイラ、ソース・コード・エディタ、プロジェクト・ビルド環境、デバッガ、プロファイラなど、多数の機能が含まれています。IDEは直感的で、アプリケーションの開発フローの各段階を、すべて同一のユーザー・インターフェイスで実行できます。使い慣れたユーティリティとインターフェイスにより、ユーザーは従来より迅速に作業を開始できます。Code Composer Studioは、Eclipseソフトウェア・フレームワークの利点と、TIの先進的な組み込みデバッグ機能の利点を組み合わせ、組み込み製品の開発者向けの魅力的な、豊富な機能を持つ開発環境を実現します。CCSをMSP MCUとともに使用すると、MSPマイクロコントローラを最大限に活用するための、ユニークで強力な一連のプラグインや組み込みソフトウェア・ユーティリティを利用できます。

コマンドライン・プログラマ

MSP Flasher は、FET プログラマまたは eZ430 を経由し、JTAG または Spy-Bi-Wire (SBW) 通信を使用して MSP マイクロコントローラをプログラムするための、オープン・ソースでシェル・ベースのインターフェイスです。MSP Flasher は、IDE を使用せずにバイナリ・ファイル (.txtまたは.hex) をMSPマイクロコントローラへ直接ダウンロードできます。

MSP MCU プログラマおよびデバッガ

MSP-FET は、MSP 低消費電力マイクロコントローラ (MCU) でのアプリケーション開発をすばやく開始できる強力なエミュレーション開発ツールです (デバッグ・プローブとも呼ばれます)。MCUのソフトウェアを作成する場合は通常、結果として得られたバイナリ・プログラムをMSPデバイスにダウンロードし、検証とデバッグを行う必要があります。MSP-FETは、ホスト・コンピュータとターゲットMSPの間で、デバッグ通信経路を提供します。さらに MSP-FET は、コンピュータの USB インターフェイスと MSP UART の間のバックチャネル UART 接続にも対応します。これにより MSP のプログラマは、コンピュータ上で動作している端末ソフトウェアと MSP との間でシリアル通信を簡単に行うことができます。

MSP-GANG量産プログラマ

MSP Gang Programmer は、8 つまでの同一の MSP430 または MSP432 のフラッシュまたは FRAM デバイスを同時にプログラムできます。MSP Gang Programmerは、標準のRS-232またはUSB接続を使用してホストPCに接続でき、柔軟なプログラミング・オプションにより、プロセスを完全にカスタマイズ可能です。MSP Gang Programmer には、Gang Splitter と呼ばれる拡張ボードが付属しており、MSP Gang Programmer と複数のターゲット・デバイスとの間で相互接続機能を実装します。