JAJSW64 January   2025 LMG2652

PRODUCTION DATA  

  1.   1
  2. 特長
  3. アプリケーション
  4. 概要
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 Electrical Characteristics
    6. 5.6 Switching Characteristics
    7. 5.7 Typical Characteristics
  7. Parameter Measurement Information
    1. 6.1 GaN Power FET Switching Parameters
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 GaN Power FET Switching Capability
      2. 7.3.2 Current-Sense Emulation
      3. 7.3.3 Bootstrap Diode Function
      4. 7.3.4 Input Control Pins (EN, INL, INH, GDH)
      5. 7.3.5 INL - INH Interlock
      6. 7.3.6 AUX Supply Pin
        1. 7.3.6.1 AUX Power-On Reset
        2. 7.3.6.2 AUX Under-Voltage Lockout (UVLO)
      7. 7.3.7 BST Supply Pin
        1. 7.3.7.1 BST Power-On Reset
        2. 7.3.7.2 BST Under-Voltage Lockout (UVLO)
      8. 7.3.8 Overcurrent Protection
      9. 7.3.9 Overtemperature Protection
    4. 7.4 Device Functional Modes
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 LLC Application
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
        3. 8.2.1.3 Application Curves
      2. 8.2.2 AHB Application
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
        1. 8.4.1.1 Solder-Joint Stress Relief
        2. 8.4.1.2 Signal-Ground Connection
        3. 8.4.1.3 CS Pin Signal
      2. 8.4.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 ドキュメントの更新通知を受け取る方法
    2. 9.2 サポート・リソース
    3. 9.3 Trademarks
    4. 9.4 静電気放電に関する注意事項
    5. 9.5 用語集
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Pin Configuration and Functions

Figure 4-1 RFB Package, 19-Pin VQFN (Top View)
Table 4-1 Pin Functions
PINTYPE(1)DESCRIPTION
NAMENO.
NC1, 6, 9, 11NCUsed to anchor QFN package to PCB. Pin must be soldered to a PCB landing pad. The PCB landing pad is non-solder mask defined pad and must not be physically connected to any other metal on the PCB. Pin not connected internally.
INH2IHigh-side gate-drive control input. Referenced to AGND. Signal is level shifted internally to the high-side GaN FET driver. There is a forward biased ESD diode from INH to AUX so avoid driving INH higher than AUX. Short this pin to AGND if GDH pin function is used.
INL 3 I Low-side gate-drive control input. Referenced to AGND. There is a forward biased ESD diode from INL to AUX so avoid driving INL higher than AUX.
CS 4 O Current-sense emulation output. Outputs scaled replica of the GaN FET current. Feed output current into a resistor to create a current sense voltage signal. Reference the resistor to the power supply controller IC local ground. This function replaces the external current sense resistor that is used in series with the low-side FET source.
SL 5, 7 P Low-side GaN FET source. Low-side thermal pad. Internally connected to AGND.
DH 8 P High-side GaN FET drain.
SW 10, 15 P GaN FET half-bridge switch node between the high-side GaN FET source and low-side GaN FET drain. High-side thermal pad.
GDH 12 I High-side gate-drive control input. Referenced to SW. Signal is connected directly to the high-side GaN FET driver. There is a forward biased ESD diode from GDH to BST so avoid driving GDH higher than BST. Short this pin to SW if INH pin function is used.
RDRVH 13 I Short to SW.
BST 14 P Bootstrap voltage rail. High-side supply voltage. The bootstrap diode function between AUX and BST is internally provided. Connect an appropriately sized bootstrap capacitor between BST and SW.
RDRVL 16 I Short to AGND.
AGND 17 G Low-side analog ground. Internally connected to SL.
AUX 18 P Auxiliary voltage rail. Low-side supply voltage. Connect a local bypass capacitor between AUX and AGND.
EN 19 I Enable. Used to toggle between active and standby modes. The standby mode has reduced quiescent current to support converter light load efficiency targets. There is a forward biased ESD diode from EN to AUX so avoid driving EN higher than AUX.
I = input, O = output, I/O = input or output, G = ground, P = power, NC = no connect