JAJU802A January   2022  – October 2022

 

  1.   概要
  2.   リソース
  3.   特長
  4.   アプリケーション
  5.   5
  6. 1System Description
    1. 1.1 Key System Specifications
  7. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Design Considerations
    3. 2.3 Highlighted Products
      1. 2.3.1 TMS320F2800137
      2. 2.3.2 TMS320F280025C
      3. 2.3.3 TMS320F280039C
      4. 2.3.4 UCC28740
      5. 2.3.5 UCC27517
      6. 2.3.6 TLV9062
      7. 2.3.7 TLV76733
    4. 2.4 System Design Theory
      1. 2.4.1 Interleaved PFC
        1. 2.4.1.1 Full Bridge Diode Rectifier Rating
        2. 2.4.1.2 Inductor Ratings
        3. 2.4.1.3 AC Voltage Sensing
        4. 2.4.1.4 DC Link Voltage Sensing
        5. 2.4.1.5 Bus Current Sensing
        6. 2.4.1.6 DC Link Capacitor Rating
        7. 2.4.1.7 MOSFET Ratings
        8. 2.4.1.8 Diode Ratings
      2. 2.4.2 Three-Phase PMSM Drive
        1. 2.4.2.1 Field Oriented Control of PM Synchronous Motor
        2. 2.4.2.2 Sensorless Control of PM Synchronous Motor
          1. 2.4.2.2.1 Enhanced Sliding Mode Observer with Phase Locked Loop
            1. 2.4.2.2.1.1 Mathematical Model and FOC Structure of an IPMSM
            2. 2.4.2.2.1.2 Design of ESMO for the IPMSM
            3. 2.4.2.2.1.3 Rotor Position and Speed Estimation with PLL
        3. 2.4.2.3 Field Weakening (FW) and Maximum Torque Per Ampere (MTPA) Control
        4. 2.4.2.4 Compressor Drive with Automatic Vibration Compensation
        5. 2.4.2.5 Fan Drive with Flying Start
        6. 2.4.2.6 Hardware Prerequisites for Motor Drive
          1. 2.4.2.6.1 Motor Current Feedback
            1. 2.4.2.6.1.1 Current Sensing with Three-Shunt
            2. 2.4.2.6.1.2 Current Sensing with Single-Shunt
          2. 2.4.2.6.2 Motor Voltage Feedback
  8. 3Hardware, Software, Testing Requirements, and Test Results
    1. 3.1 Getting Started Hardware
      1. 3.1.1 Hardware Board Overview
      2. 3.1.2 Test Conditions
      3. 3.1.3 Test Equipment Required for Board Validation
      4. 3.1.4 Test Setup
    2. 3.2 Getting Started Firmware
      1. 3.2.1 Download and Install Software Required for Board Test
      2. 3.2.2 Opening Project Inside CCS
      3. 3.2.3 Project Structure
    3. 3.3 Test Procedure
      1. 3.3.1 Build Level 1: CPU and Board Setup
        1. 3.3.1.1 Start CCS and Open Project
        2. 3.3.1.2 Build and Load Project
        3. 3.3.1.3 Setup Debug Environment Windows
        4. 3.3.1.4 Run the Code
      2. 3.3.2 Build Level 2: Open Loop Check with ADC Feedback
        1. 3.3.2.1 Start CCS and Open Project
        2. 3.3.2.2 Build and Load Project
        3. 3.3.2.3 Setup Debug Environment Windows
        4. 3.3.2.4 Run the Code
      3. 3.3.3 Build Level 3: Closed Current Loop Check
        1. 3.3.3.1 Start CCS and Open Project
        2. 3.3.3.2 Build and Load Project
        3. 3.3.3.3 Setup Debug Environment Windows
        4. 3.3.3.4 Run the Code
      4. 3.3.4 Build Level 4: Full PFC and Motor Drive Control
        1. 3.3.4.1  Start CCS and Open Project
        2. 3.3.4.2  Build and Load Project
        3. 3.3.4.3  Setup Debug Environment Windows
        4. 3.3.4.4  Run the Code
        5. 3.3.4.5  Run the System
        6. 3.3.4.6  Tuning Motor Drive FOC Parameters
        7. 3.3.4.7  Tuning PFC Parameters
        8. 3.3.4.8  Tuning Field Weakening and MTPA Control Parameters
        9. 3.3.4.9  Tuning Flying Start Control Parameters
        10. 3.3.4.10 Tuning Vibration Compensation Parameters
        11. 3.3.4.11 Tuning Current Sensing Parameters
    4. 3.4 Test Results
      1. 3.4.1 Performance Data and Curves
      2. 3.4.2 Functional Waveforms
      3. 3.4.3 Transient Waveforms
      4. 3.4.4 MCU CPU Load, Memory and Peripherals Usage
        1. 3.4.4.1 CPU Load for Full Implementation
        2. 3.4.4.2 Memory Usage
        3. 3.4.4.3 Peripherals Usage
    5. 3.5 Migrate Firmware to a New Hardware Board
      1. 3.5.1 Configure the PWM, CMPSS, and ADC Modules
      2. 3.5.2 Setup Hardware Board Parameters
      3. 3.5.3 Configure Faults Protection Parameters
      4. 3.5.4 Setup Motor Electrical Parameters
      5. 3.5.5 Setup PFC Control Parameters
  9. 4Design and Documentation Support
    1. 4.1 Design Files
      1. 4.1.1 Schematics
      2. 4.1.2 Bill of Materials
      3. 4.1.3 Altium Project
      4. 4.1.4 Gerber Files
      5. 4.1.5 PCB Layout Guidelines
    2. 4.2 Software Files
    3. 4.3 Documentation Support
    4. 4.4 サポート・リソース
    5. 4.5 Trademarks
  10. 5Terminology
  11. 6Revision History

CPU Load for Full Implementation

Table 3-7 shows the CPU cycles used, the CPU loading and available MIPs when a full implementation of InstaSPIN-FOC is used for dual motor control with PFC on F280025C with 100 MHz CPU, as well as users' code is loaded to FLASH, and the ISR code is copied to RAM for execution.

Table 3-7 F28002x CPU Loading for Dual Motor Control with FAST
CPU=100MHzMaximum CPU Cycles
For ISR
Maximum CPU
Utilization [%]
Maximum MIPS Used [MIPS]
PFC at PWM=72kHz, ISR= 36kHz46516.7416.74
Motor 1 at PWM=6kHz, ISR=6kHz237214.2314.23
Motor 2 at PWM=18kHz, ISR=6kHz222613.3613.36
Total Used CPU Utilization44.3344.33
Available CPU MIPS55.67

Table 3-8 shows the CPU cycles used, the CPU loading and available MIPs when a full implementation of eSMO is used for dual motor control with PFC on F280025C with 100 MHz CPU, as well as users' code is loaded to FLASH, and the ISR code is copied to RAM for execution.

Table 3-8 F28002x CPU Loading for Dual Motor Control with eSMO
F280025C CPU = 100 MHz
Available MIPS = 100 MIPS
Maximum CPU Cycles
For ISR
Maximum CPU
Utilization [%]
Maximum MIPS Used [MIPS]
PFC at PWM = 72 kHz, ISR = 36 kHz46516.7416.74
Motor 1 at PWM = 6 kHz, ISR = 6 kHz174510.4710.47
Motor 2 at PWM = 18 kHz, ISR = 6 kHz15689.419.41
Total Used CPU Utilization [%]36.62
Available CPU MIPS [MIPS]

63.38

Table 3-9 shows the CPU cycles used, the CPU loading and available MIPs when a full implementation of InstaSPIN-FOC is used for dual motor control with PFC on F280039C/F2800137 with 120 MHz CPU, as well as users' code is loaded to FLASH, and the ISR code is copied to RAM for execution.

Table 3-9 F28003x/F280013x CPU Loading for Dual Motor Control with FAST
CPU=120MHzMaximum CPU Cycles
For ISR
Maximum CPU
Utilization [%]
Maximum MIPS Used [MIPS]
PFC at PWM=72kHz, ISR=46513.9516.74
Motor 1 at PWM=6kHz, ISR=6kHz237211.8614.23
Motor 2 at PWM=18kHz, ISR=6kHz222611.1313.36
Total Used CPU Utilization [%]36.94
Available CPU MIPS [MIPS]75.67

Table 3-10 shows the CPU cycles used, the CPU loading and available MIPs when a full implementation of eSMO is used for dual motor control with PFC on F280039C/F2800137 with 120MHz CPU, as well as users' code is loaded to FLASH, and the ISR code is copied to RAM for execution.

Table 3-10 F28003x/F280013x CPU Loading for Dual Motor Control with eSMO
F280039C CPU = 120 MHz
Available MIPS = 120 MIPS
Maximum CPU Cycles
For ISR
Maximum CPU
Utilization [%]
Maximum MIPS Used [MIPS]
PFC at PWM = 72 kHz, ISR = 32 kHz46513.9516.74
Motor 1 at PWM = 6kHz, ISR = 6kHz17458.7210.47
Motor 2 at PWM = 18kHz, ISR = 6kHz15687.849,41
Total Used CPU Utilization [%]30.52
Available CPU MIPS [MIPS]83.38