JAJU857 December   2022

 

  1.   概要
  2.   リソース
  3.   特長
  4.   アプリケーション
  5.   5
  6. 1System Description
    1. 1.1 Key System Specifications
  7. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 System Design Theory
      1. 2.2.1 Detection Principals
      2. 2.2.2 Saturation
      3. 2.2.3 General Mode of Operation
    3. 2.3 Highlighted Products
      1. 2.3.1 DRV8220
      2. 2.3.2 OPAx202
      3. 2.3.3 TLVx172
      4. 2.3.4 TLV7011
      5. 2.3.5 INA293
      6. 2.3.6 SN74LVC1G74
      7. 2.3.7 TLV767
  8. 3Hardware, Software, Testing Requirements, and Test Results
    1. 3.1 Hardware
      1. 3.1.1  Board Overview
      2. 3.1.2  Filter Stage
      3. 3.1.3  Differential to Single-Ended Converter
      4. 3.1.4  Low-Pass Filter
      5. 3.1.5  Full-Wave Rectifier
      6. 3.1.6  DC Offset Circuit
      7. 3.1.7  Auto-Oscillation Circuit
        1.       31
      8. 3.1.8  DRV8220 H-Bridge
      9. 3.1.9  Saturation Detection Circuit
      10. 3.1.10 H-Bridge Controlled by DFF
      11. 3.1.11 MCU Selection
      12. 3.1.12 Move Away From Timer Capture
      13. 3.1.13 Differentiating DC and AC From the Same Signal
      14. 3.1.14 Fluxgate Sensor
    2. 3.2 Software Requirements
      1. 3.2.1 Software Description for Fault Detection
    3. 3.3 Test Setup
      1. 3.3.1 Ground-Fault Simulation
    4. 3.4 Test Results
      1. 3.4.1 Linearity Over Temperature
    5. 3.5 Fault Response Results
  9. 4Design and Documentation Support
    1. 4.1 Design Files
      1. 4.1.1 Schematics
      2. 4.1.2 BOM
    2. 4.2 Documentation Support
    3. 4.3 サポート・リソース
    4. 4.4 Trademarks
  10. 5About the Author

Move Away From Timer Capture

Timer capture is a method to read the DC fault by reading duty cycle shifts from the auto-oscillation circuit. This is a common measurement technique in RCD modules. With a DC fault condition, the duty cycle of the DRV8220 shifts as the B-H curve or magnetization curve loop shifts. The DC fault current through the core causes saturation slightly quicker in one direction than the other. This translates into a measurable shift in duty cycle.

This approach was sensitive to noise in components, oscillators, and magnetic cores. This approach is found to require more expensive components with less delay, and faster MCU clock speeds. There was a large inconsistency of duty cycle shift dependent on which magnetic core was used. In many cases, the jitter caused by noise blinded the signal, causing false trips.

Reading a DC fault with an ADC on the output of the filter path resulted in a lower cost BoM and more accurate readings over a broader selection of fluxgate sensor material types.