SLAA494B May   2011  – September 2023 MSP430AFE221 , MSP430AFE222 , MSP430AFE223 , MSP430AFE231 , MSP430AFE232 , MSP430AFE233 , MSP430AFE251 , MSP430AFE252 , MSP430AFE253

 

  1.   1
  2.   Implementation of a Single-Phase Electronic Watt-Hour Meter Using the MSP430AFE2xx
  3. Trademarks
  4. Introduction
  5. Block Diagram
  6. Hardware Implementation
    1. 4.1 Power Supply
      1. 4.1.1 Resistor Capacitor (RC) Power Supply
      2. 4.1.2 Switching-Based Power Supply
    2. 4.2 Analog Inputs
      1. 4.2.1 Voltage Inputs
      2. 4.2.2 Current Inputs
  7. Software Implementation
    1. 5.1 Peripherals Setup
      1. 5.1.1 SD24 Setup
    2. 5.2 Foreground Process
      1. 5.2.1 Formulas
        1. 5.2.1.1 Voltage and Current
        2. 5.2.1.2 Power and Energy
    3. 5.3 The Background Process
      1. 5.3.1 Voltage and Current Signals
      2. 5.3.2 Phase Compensation
      3. 5.3.3 Frequency Measurement and Cycle Tracking
      4. 5.3.4 LED Pulse Generation
    4. 5.4 Energy Meter Configuration
  8. Energy Meter Demo
    1. 6.1 EVM Overview
      1. 6.1.1 Connections to the Test Setup or AC Voltages
      2. 6.1.2 Power Supply Options
    2. 6.2 Loading the Example Code
      1. 6.2.1 Opening the Project
  9. Results
    1. 7.1 Viewing Results on PC
    2. 7.2 Viewing Results During Debug
  10. Important Notes
  11. Schematics
  12. 10References
  13. 11Revision History

Important Notes

  • This document is preliminary and is subject to change when the next board revision is made available.
  • Never use the mains at the same time as debug, unless you are using isolated-FET USB FETs.
  • The MSP430AFE and the MSP430F6638 have two different GND planes, and this needs to be maintained if PC communication is done via USB.
  • The first revision of the software does not include any projects on the MSP430F6638, but these will be added in the future.
  • Two LEDs on the board, one for active and the other for reactive, are present to test the accuracy of the meter via pulse generation.
  • The same pulses are also available on headers ACT_PUL and REACT_PUL. However, these pulses on the header are not isolated. For isolated pulses, use the header HDR1 and HDR2, instead.
  • The board is not supplied with current sensors. You must ensure sensors are connected before making connections to CUR1 and CUR 2 points on the lower side of the EVM.
WARNING:

Failure to adhere to these steps and/or not heed the safety requirements at each step may lead to shock, injury, and damage to the hardware. Texas Instruments is not responsible or liable in any way for shock, injury, or damage caused due to negligence or failure to heed advice.