SLUAAL2 june   2023 UCC256402 , UCC256403 , UCC256404

 

  1.   1
  2.   Abstract
  3.   Trademarks
  4. 1UCC25640x Frequently Asked Questions
    1. 1.1  For the Time Domain Simulation and Fundamental Harmonic Analysis of LLC Resonant Converters, What Model of the Transformer Should be Used?
      1. 1.1.1 LLC Design Using T Type Transformer Model
    2. 1.2  How to Connect External Gate Drivers to the UCC25640x for High Gate Driver Current Capability?
    3. 1.3  When Powering on the PFC-LLC AC-DC Converter, What Sequence is Recommended?
    4. 1.4  How to Eliminate the Nuisance ZCS Detection During the Light Load?
    5. 1.5  What is the Purpose of Maintaining the FB Pin Voltage of the UCC25640x Controllers at a Constant Level?
    6. 1.6  How to Improve the Slew Rate Detection at HS Pin of the UCC25640x Controller?
    7. 1.7  How to Operate the UCC25640x Controller in the Open Loop?
    8. 1.8  What Happens if the VCR Pin Peak to Peak Voltage of the Controller Exceeds 6 V?
    9. 1.9  What UCC25640x settings effect the startup duration of the LLC?
    10. 1.10 What is Causing the Current Imbalance in the LLC's Secondary Side Windings?
    11. 1.11 How to Design TL431 Compensator for LLC With UCC25640x Controller
      1. 1.11.1 LLC Plant Transfer Function Under HHC Control
      2. 1.11.2 Type 2 and Type 3 Compensator with TL431 [20]
        1. 1.11.2.1 Type 2 Compensator
        2. 1.11.2.2 Type 2 Compensator Without Fast Lane
        3. 1.11.2.3 Type 3 Compensator with Fast Lane
        4. 1.11.2.4 Type 3 Compensator Without Fast Lane
      3. 1.11.3 Type 3 Compensator Design Example
    12. 1.12 How to Design LLC for Battery Charging and LED Driver Applications?
      1. 1.12.1 LED Driver Design Example
      2. 1.12.2 Battery Charger Design Example
    13. 1.13 How to Implement CC-CV Feedback Control?
      1. 1.13.1 Voltage Feedback Loop (Type 2) Transfer Function
      2. 1.13.2 Current Feedback Loop (Type 2) Transfer Function
    14. 1.14 What is the Simplest Approach to Configure the Burst Mode Thresholds for UCC25640x Based on the Load Power?
    15. 1.15 How to Avoid the UCC25640x Controller to Enter into Burst Mode?
    16. 1.16 What are the Methods for Preventing VCC From Decreasing Below the VCC Restart Threshold During Burst Mode?
    17. 1.17 How Does BMTL Threshold Value Impacts the Output Voltage Ripple and the VCC Pin Voltage and Magnetizing Current?
    18. 1.18 How to Design Magnetics for LLC?
      1. 1.18.1 LLC Resonant Inductor Design
      2. 1.18.2 LLC Transformer Design
    19. 1.19 How is the Dead Time in UCC25640x Determined During ZCS Detection and in the Absence of Valid Slew Rate Detection?
  5. 2References

LLC Resonant Inductor Design

GUID-20230314-SS0I-CBQZ-D1J7-ZJJDGCPNCC1J-low.svg Figure 1-36 LLC Resonant Inductor Design Procedure

Here for designing the resonant inductor, the same method given in Reference [14] is followed. PFC LLC EVM [15] is considered as an design example.

Step 1: Specifications

Equation 65. Resonant Inductor value  L r = 75 u H
Equation 66. At minimum Input voltage and at maximum output power:       Peak current of the resonant inductor  I p = 1.9 A         RMS current of the resonant inductor  I r m s = 1.27 A         Switching frequency  f s w = 77 k H z
Equation 67. At Rated Input voltage and at maximum output power:       Peak current of the resonant inductor  I p = 1.78 A         RMS current of the resonant inductor  I r m s = 1.22 A         Switching frequency  f s w = 88 k H z

Step 2: Pick a core based on the maximum energy to be stored

Equation 68. Area Product of a core  A p = W a A c = L I p 2 K u J m B m ( m 4 )

[Equation 10.100 in Reference 16]

Equation 69. where  W a  is window area and  A c  is core area
Equation 70. K u  is window utilization factor (for Litz wire it is : 0 .3 to 0 .4)
Equation 71. J m  is peak current density:  4   t o  6 A / m m 2 (under natural cooling condition)
Equation 72. B m  is peak flux density of the core 

Bm is chosen such that at the operating frequency, core loss power density should be less than 150 mW/cm3 for natural convection cooling.

In general, suggested magnetic materials for reducing core losses are 3C95, 3F4 from Ferroxcube (Ferroxcube Cores and Accessories) and PC47, PC90, PC95 from TDK ( TDK Cores and Accessories).

Equation 73. For  K u = 0.3 ,   J m = 4 A / m m 2 ,   B m = 0.15 T ,   A p 1320 m m 4

For this design, RM8 core with 3C95 material is selected. This core's effective cross section area A c = 63 m m 2 (Ferroxcube RM8 core data sheet) and minimum winding area W a = 31 m m 2 (Ferroxcube RM8 bobbin data sheet). Cores, Bobbin, Clamp can be obtained from following links: RM8 with 3C95, RM8 Bobbin, Clamp for RM8 Core.

Step 3: Wire Selection and Airgap calculation

Equation 74. The effective cross-sectional area of the bare winding is  A w = I p J m = 1.78 4 = 0.4450 m m 2
Equation 75. Let's initially select AWG21 which has a copper area about 0 .4116 m m 2  which is closest to required copper area .
Equation 76. So the actual current density would be  J m _ a c t = 1.78 0.4116 = 4.32 A m m 2
In order to reduce both skin and proximity losses, Litz wire is considered for this design .
Equation 77. In general, for high frequency (around 100kHz) designs, AWG38-42 should be selected for each strand .
The skin depth of copper at  88 k H z  is  δ = 66.2 f   ( m m )  =  66.2 88 , 000 =   0.2232 m m [Equation 10.148 in Reference 16]
Equation 78. Here AWG 38 is chosen with 50 strands for following reasons: 
Equation 79.       1 . Its over all copper area is equivalent to AWG21 copper area
Equation 80.       2 . Each strand diameter is much less than skin depth so that current through the each strand will be uniform
Equation 81.       3 . And its readily available
(Litz Wire Data from MWS Wire Industries)
Equation 82. With insulation, the overall diameter ( d o ) of the  U N S E R V E D   L I T Z   W I R E  of 38AWG  with 50 strands is 0 .9398mm

(Litz Wire Data from MWS Wire Industries)

Equation 83. The cross sectional area of the insulated wire is  A w o = π d o 2 4 = π × 0.9398 2 4 = 0.6937 m m 2
Equation 84. The minimum number of turns is  N = K u W a A w o = 0.3 × 31 0.6937 = 13.4
Equation 85. Pick  N = 14.  The air-gap length is  l g = μ o A c N 2 L r = 4 π × 10 7 × 63 × 10 3 × 14 2 75 × 10 6 = 0.207 m m

Step 4: Copper Loss Calculation

Equation 86. The winding width of the bobbin is 8 .9mm

(Ferroxcube RM8 bobbin data sheet)

Equation 87. Since there are 14 bundle turns each with 0 .9398mm over all diameter, total number of bundled winding layers ( N l ) would be 2 .
Equation 88. Each bundle has a total number of strands  k   = 50

(represented in Figure 1-37 as a 7 × 7  matrix )

Equation 89. The strands in each bundle are modelled as a square with  k  strands on each side of the bundle as shown in below figure
GUID-20230410-SS0I-K4CL-PLN5-8WGZZGKWRHCB-low.svg Figure 1-37 Model of the Litz Wire Winding Around a Central Core
Equation 90. The effective number of layers of the Litz-wire winding with the square arrangement of the strands in a bundle  is given by  N l l = N l × k = 2 × 50 = 14.14 14
Equation 91. The total number of strands in each layer is given as  N s l = the number of bundle turns in a layer  ×  number of strands of each side of the square bundle = 7 × 50 = 49.49 50
Equation 92. The mean length of the turn is  l T = 42 m m

(Ferroxcube RM8 bobbin data sheet)

Equation 93. The DC resistance of the single AWG38 strand is  R w D C s = l T × A W G 38  DC resistance per m = 42 × 2.1266 = 89.32 m Ω
Equation 94. The AC power loss of a single layer is given by  P a c =  DC power loss of a single layer × φ × Q ' ( φ , m )

[Table 10.1 in Reference 16]

[Equation 10.80 in Reference 9]

Equation 95. Here  φ = η π 4 d s δ   where  η  is porosity factor,  d s  is strand bare wire diameter,  δ  is skin depth for a given frequency

[Equation 10.74 in Reference 9]

Equation 96. Q ' ( φ , m ) = ( 2 m 2 2 m + 1 ) G 1 ( φ ) 4 m ( m 1 ) G 2 ( φ )

[Equation 10.81 in Reference 9]

Equation 97. G 1 ( φ ) = sinh ( 2 φ ) + sin ( 2 φ ) cosh ( 2 φ ) - cos ( 2 φ ) G 2 ( φ ) = sinh ( φ ) cos ( φ ) + cosh ( φ ) sin ( φ ) cosh ( 2 φ ) - cos ( 2 φ )

[Equation 10.76 in Reference 9]

Equation 98. m for each layer can be found by  m = m m f ( h ) m m f ( h ) m m f ( 0 ) where h is thickness of each layer

[Equation 10.81 in Reference 9]

Equation 99. In this design example, the DC power loss of a single layer is given as = square of the RMS current through each strand × DC resistance of a single strand × total number of strands in a single layer = I r m s k 2 × R w D C s × N s l = 1.22 50 2 × 89.32 m Ω × 50 = 2.66 m W
Equation 100. Porosity factor η = Number of strands per layer ( N s l ) × S trand diameter with insulation width of the bobbin = 50 × 0.124 m m 8 .9mm = 0.7

[Equation 10.73 in Reference 9]

Equation 101. In this design, mmf due to each layer = current through each strand × number of strands in a layer = I r m s k × N s l
Equation 102. S o ,  layer 1's m value can be determined by  m = I r m s k × N s l I r m s k × N s l - 0 = 1

[Equation 10.90 in Reference 9]

Equation 103. Layer 2's m value can be determined by  m = 2 I r m s k × N s l 2 I r m s k × N s l - I r m s k × N s l = 2
Equation 104. Similarly, m values for other adjacent layers increase by 1 . Since there are 14 layers, m value increases up to 14 .
Equation 105. φ = η π 4 d s δ = 0.7 π 4 0.1007 0.2232 = 0.335

where 0.1007 is AWG38 bare wire diameter in mm [Table 10.1 in Reference 16].

The copper loss for all the layers is given by  P w = DC power loss of a single layer × m = 1 14 φ Q ' ( φ , m ) = 47 m W

Step 5: Flux Density and Core-Loss Calculation

Equation 106. The amplitude of the core magnetic flux density at rated input voltage is  B m = μ o N I p l g = 4 π × 10 7 × 14 × 1.78 0.2 × 10 3 = 0.157 T
Equation 107. The core loss per unit volume ( P v ) at  0.157 T ,   88 k H z  is  150 m W / c m 3

(Use power loss calculator in the Ferroxcube design tool for finding core loss of the material Core Loss Calculator)

Equation 108. The total core loss is  P C = V C P v = 150 m W / c m 3 × 2440 m m 3 = 366 m W
Equation 109. The amplitude of the core magnetic flux density at minimum input voltage is  B m _ max = μ o N I p _ max l g = 4 π × 10 7 × 14 × 1.9 0.2 × 10 3 = 0.167 T
Equation 110. At worst case current,  B m _ max  is less than saturation flux density of the ferrite material .

Step 6: Temperature Rise and Bobbin Fit Calculations

Equation 111. Total power loss of the inductor is  P w c = P w + P C = 0.4 W
Equation 112. The surface area of RM-8 core is  A t = 20.2 c m 2

Table 3-43

The surface power loss density is  ψ = P w c A t = 0.4 W 20.2 c m 2 = 0.0206 W / c m 2
Equation 113. The temperature rise of the inductor is  Δ T = 450 ψ 0.826 = 450 × 0.0206 W / c m 2 0.826 = 18.25 o C

[Equation 10.193 in Reference 16]

Equation 114. The actual core window utilization factor is  K u = N A w o W a = 14 × 0.6937 31 = 0.3133