DLPS033E November   2014  – May 2025 DLP9500UV

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Description (continued)
  6. Pin Configuration and Functions
    1.     Pin Functions
  7. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  Storage Conditions
    3. 6.3  ESD Ratings
    4. 6.4  Recommended Operating Conditions
    5. 6.5  Thermal Information
    6. 6.6  Electrical Characteristics
    7. 6.7  LVDS Timing Requirements
    8. 6.8  LVDS Waveform Requirements
    9. 6.9  Serial Control Bus Timing Requirements
    10. 6.10 Systems Mounting Interface Loads
    11. 6.11 Micromirror Array Physical Characteristics
    12. 6.12 Micromirror Array Optical Characteristics
    13. 6.13 Chipset Component Usage Specification
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 DLPC410—Digital Controller for DLP Discovery 4100 Chipset
      2. 7.3.2 DLPA200 - DMD Micromirror Drivers
      3. 7.3.3 DLPR410—PROM for DLP Discovery 4100 Chipset
      4. 7.3.4 DLP9500—DLP 0.95 1080p 2xLVDS UV Type-A DMD 1080p DMD
        1. 7.3.4.1 DLP9500UV 1080p Chipset Interfaces
          1. 7.3.4.1.1 DLPC410 Interface Description
            1. 7.3.4.1.1.1 DLPC410 IO
            2. 7.3.4.1.1.2 Initialization
            3. 7.3.4.1.1.3 DMD Device Detection
            4. 7.3.4.1.1.4 Power Down
          2. 7.3.4.1.2 DLPC410 to DMD Interface
            1. 7.3.4.1.2.1 DLPC410 to DMD IO Description
            2. 7.3.4.1.2.2 Data Flow
          3. 7.3.4.1.3 DLPC410 to DLPA200 Interface
            1. 7.3.4.1.3.1 DLPA200 Operation
            2. 7.3.4.1.3.2 DLPC410 to DLPA200 IO Description
          4. 7.3.4.1.4 DLPA200 to DLP9500UV Interface
            1. 7.3.4.1.4.1 DLPA200 to DLP9500UV Interface Overview
      5. 7.3.5 Measurement Conditions
    4. 7.4 Device Functional Modes
      1. 7.4.1 Single Block Mode
      2. 7.4.2 Dual Block Mode
      3. 7.4.3 Quad Block Mode
      4. 7.4.4 Global Block Mode
    5. 7.5 Window Characteristics and Optics
      1. 7.5.1 Optical Interface and System Image Quality
      2. 7.5.2 Numerical Aperture and Stray Light Control
      3. 7.5.3 Pupil Match
      4. 7.5.4 Illumination Overfill
    6. 7.6 Micromirror Array Temperature Calculation
      1. 7.6.1 Package Thermal Resistance
      2. 7.6.2 Case Temperature
      3. 7.6.3 Micromirror Array Temperature Calculation
    7. 7.7 Micromirror Landed-On and Landed-Off Duty Cycle
      1. 7.7.1 Definition of Micromirror Landed-On/Landed-Off Duty Cycle
      2. 7.7.2 Landed Duty Cycle and Useful Life of the DMD
      3. 7.7.3 Landed Duty Cycle and Operational DMD Temperature
      4. 7.7.4 Estimating the Long-Term Average Landed Duty Cycle of a Product or Application
  9. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 DMD Reflectivity Characteristics
        1. 8.1.1.1 Design Considerations Influencing DMD Reflectivity
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
        1. 8.2.1.1 Device Description
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curve
    3. 8.3 Power Supply Recommendations
      1. 8.3.1 Power-Up Sequence (Handled by the DLPC410)
      2. 8.3.2 DMD Power-Up and Power-Down Procedures
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
        1. 8.4.1.1 Impedance Requirements
        2. 8.4.1.2 PCB Signal Routing
        3. 8.4.1.3 Fiducials
        4. 8.4.1.4 PCB Layout Guidelines
          1. 8.4.1.4.1 DMD Interface
            1. 8.4.1.4.1.1 Trace Length Matching
          2. 8.4.1.4.2 DLP9500UV Decoupling
            1. 8.4.1.4.2.1 Decoupling Capacitors
          3. 8.4.1.4.3 VCC and VCC2
          4. 8.4.1.4.4 DMD Layout
          5. 8.4.1.4.5 DLPA200
      2. 8.4.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Device Support
      1. 9.1.1 Device Nomenclature
      2. 9.1.2 Device Marking
    2. 9.2 Documentation Support
      1. 9.2.1 Related Documentation
    3. 9.3 Related Links
    4. 9.4 Support Resources
    5. 9.5 Trademarks
    6. 9.6 Electrostatic Discharge Caution
    7. 9.7 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information
Decoupling Capacitors

Decoupling capacitors should be placed to minimize the distance from the decoupling capacitor to the supply and ground pin of the component. TI recommends that the placement of and routing for the decoupling capacitors meet the following guidelines:

  • The supply voltage pin of the capacitor should be located close to the device supply voltage pin or pins. The decoupling capacitor should have vias to ground and voltage planes. The device can be connected directly to the decoupling capacitor (no via) if the trace length is less than 0.1 inch. Otherwise, the component should be tied to the voltage or ground plane through separate vias.
  • The trace lengths of the voltage and ground connections for decoupling capacitors and components should be less than 0.1 inch to minimize inductance.
  • The trace width of the power and ground connection to decoupling capacitors and components should be as wide as possible to minimize inductance.
  • Connecting decoupling capacitors to ground and power planes through multiple vias can reduce inductance and improve noise performance.
  • Decoupling performance can be improved by using low ESR and low ESL capacitors.