SBASB79A November   2024  – February 2026 TAA3020

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  ESD Ratings
    3. 5.3  Recommended Operating Conditions
    4. 5.4  Thermal Information
    5. 5.5  Electrical Characteristics
    6. 5.6  Timing Requirements: I2C Interface
    7. 5.7  Switching Characteristics: I2C Interface
    8. 5.8  Timing Requirements: TDM, I2S or LJ Interface
    9. 5.9  Switching Characteristics: TDM, I2S or LJ Interface
    10. 5.10 Timing Requirements: PDM Digital Microphone Interface
    11. 5.11 Switching Characteristics: PDM Digial Microphone Interface
    12. 5.12 Timing Diagrams
  7. Detailed Description
    1. 6.1 Overview
    2. 6.2 Functional Block Diagram
    3. 6.3 Feature Description
      1. 6.3.1  Serial Interfaces
        1. 6.3.1.1 Control Serial Interfaces
        2. 6.3.1.2 Audio Serial Interfaces
          1. 6.3.1.2.1 Time Division Multiplexed Audio (TDM) Interface
          2. 6.3.1.2.2 Inter IC Sound (I2S) Interface
          3. 6.3.1.2.3 Left-Justified (LJ) Interface
        3. 6.3.1.3 Using Multiple Devices With Shared Buses
      2. 6.3.2  Phase-Locked Loop (PLL) and Clock Generation
      3. 6.3.3  Input Channel Configurations
      4. 6.3.4  Reference Voltage
      5. 6.3.5  Programmable Microphone Bias
      6. 6.3.6  Signal-Chain Processing
        1. 6.3.6.1 Programmable Channel Gain and Digital Volume Control
        2. 6.3.6.2 Programmable Channel Gain Calibration
        3. 6.3.6.3 Programmable Channel Phase Calibration
        4. 6.3.6.4 Programmable Digital High-Pass Filter
        5. 6.3.6.5 Programmable Digital Biquad Filters
        6. 6.3.6.6 Programmable Channel Summer and Digital Mixer
        7. 6.3.6.7 Configurable Digital Decimation Filters
          1. 6.3.6.7.1 Linear Phase Filters
            1. 6.3.6.7.1.1 Sampling Rate: 7.35kHz to 8kHz
            2. 6.3.6.7.1.2 Sampling Rate: 14.7kHz to 16kHz
            3. 6.3.6.7.1.3 Sampling Rate: 22.05kHz to 24kHz
            4. 6.3.6.7.1.4 Sampling Rate: 29.4kHz to 32kHz
            5. 6.3.6.7.1.5 Sampling Rate: 44.1kHz to 48kHz
            6. 6.3.6.7.1.6 Sampling Rate: 88.2kHz to 96kHz
            7. 6.3.6.7.1.7 Sampling Rate: 176.4kHz to 192kHz
            8. 6.3.6.7.1.8 Sampling Rate: 352.8kHz to 384kHz
            9. 6.3.6.7.1.9 Sampling Rate: 705.6kHz to 768kHz
          2. 6.3.6.7.2 Low-Latency Filters
            1. 6.3.6.7.2.1 Sampling Rate: 14.7kHz to 16kHz
            2. 6.3.6.7.2.2 Sampling Rate: 22.05kHz to 24kHz
            3. 6.3.6.7.2.3 Sampling Rate: 29.4kHz to 32kHz
            4. 6.3.6.7.2.4 Sampling Rate: 44.1kHz to 48kHz
            5. 6.3.6.7.2.5 Sampling Rate: 88.2kHz to 96kHz
            6. 6.3.6.7.2.6 Sampling Rate: 176.4kHz to 192kHz
          3. 6.3.6.7.3 Ultra-Low Latency Filters
            1. 6.3.6.7.3.1 Sampling Rate: 14.7kHz to 16kHz
            2. 6.3.6.7.3.2 Sampling Rate: 22.05kHz to 24kHz
            3. 6.3.6.7.3.3 Sampling Rate: 29.4kHz to 32kHz
            4. 6.3.6.7.3.4 Sampling Rate: 44.1kHz to 48kHz
            5. 6.3.6.7.3.5 Sampling Rate: 88.2kHz to 96kHz
            6. 6.3.6.7.3.6 Sampling Rate: 176.4kHz to 192kHz
            7. 6.3.6.7.3.7 Sampling Rate: 352.8kHz to 384kHz
      7. 6.3.7  Automatic Gain Controller (AGC)
      8. 6.3.8  Voice Activity Detection (VAD)
      9. 6.3.9  Digital PDM Microphone Record Channel
      10. 6.3.10 Interrupts, Status, and Digital I/O Pin Multiplexing
    4. 6.4 Device Functional Modes
      1. 6.4.1 Sleep Mode or Software Shutdown
      2. 6.4.2 Active Mode
      3. 6.4.3 Software Reset
    5. 6.5 Programming
      1. 6.5.1 Control Serial Interfaces
        1. 6.5.1.1 I2C Control Interface
          1. 6.5.1.1.1 General I2C Operation
            1. 6.5.1.1.1.1 I2C Single-Byte and Multiple-Byte Transfers
              1. 6.5.1.1.1.1.1 I2C Single-Byte Write
              2. 6.5.1.1.1.1.2 I2C Multiple-Byte Write
              3. 6.5.1.1.1.1.3 I2C Single-Byte Read
              4. 6.5.1.1.1.1.4 I2C Multiple-Byte Read
  8. Register Maps
    1. 7.1 Device Configuration Registers
    2. 7.2 Page_0 Registers
    3. 7.3 Page_1 Registers
    4. 7.4 Programmable Coefficient Registers
      1. 7.4.1 Programmable Coefficient Registers: Page 2
      2. 7.4.2 Programmable Coefficient Registers: Page 3
      3. 7.4.3 Programmable Coefficient Registers: Page 4
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Applications
      1. 8.2.1 Two-Channel Analog Microphone Recording
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
          1. 8.2.1.2.1 Example Device Register Configuration Script for EVM Setup
      2. 8.2.2 Four-Channel Digital PDM Microphone Recording
        1. 8.2.2.1 Design Requirements
        2. 8.2.2.2 Detailed Design Procedure
          1. 8.2.2.2.1 Example Device Register Configuration Script for EVM Setup
    3. 8.3 Best Design Practices
    4. 8.4 Power Supply Recommendations
    5. 8.5 Layout
      1. 8.5.1 Layout Guidelines
      2. 8.5.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Documentation Support
      1. 9.1.1 Related Documentation
    2. 9.2 Receiving Notification of Documentation Updates
    3. 9.3 Support Resources
    4. 9.4 Trademarks
    5. 9.5 Electrostatic Discharge Caution
    6. 9.6 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Reference Voltage

All audio data converters require a DC reference voltage. The TAA3020 achieves low-noise performance by internally generating a low-noise reference voltage. This reference voltage is generated using a band-gap circuit with high PSRR performance. This audio converter reference voltage must be filtered externally using a minimum 1-µF capacitor connected from the VREF pin to analog ground (AVSS).

The value of this reference voltage can be configured using the P0_R59_D[1:0] register bits and must be set to an appropriate value based on the desired full-scale input for the device and the AVDD supply voltage available in the system. The default VREF value is set to 2.75V, which in turn supports a 2VRMS differential full-scale input to the device. The required minimum AVDD voltage for this mode is 3V. Table 6-11 lists the various VREF settings supported along with required AVDD range and the supported full-scale input signal for that configuration.

Table 6-11 VREF Programmable Settings
P0_R59_D[1:0] : ADC_FSCALE[1:0] VREF OUTPUT VOLTAGE (Same as Internal ADC VREF) DIFFERENTIAL FULL-SCALE INPUT SUPPORTED SINGLE-ENDED FULL-SCALE INPUT SUPPORTED AVDD RANGE REQUIREMENT
00 (default) 2.75V 2 VRMS 1 VRMS 3V to 3.6V
01 2.5V 1.818 VRMS 0.909 VRMS 2.8V to 3.6V
10 1.375V 1 VRMS 0.5 VRMS 1.7V to 1.9V
11 Reserved Reserved Reserved Reserved

To achieve low-power consumption, this audio reference block is powered down as described in the Sleep Mode or Software Shutdown section. When exiting sleep mode, the audio reference block is powered up using the internal fast-charge scheme and the VREF pin settles to its steady-state voltage after the settling time (a function of the decoupling capacitor on the VREF pin). This time is approximately equal to 3.5ms when using a 1μF decoupling capacitor. If a higher-value decoupling capacitor is used on the VREF pin, the fast-charge setting must be reconfigured using the VREF_QCHG (P0_R2_D[4:3]) register bits, which support options of 3.5ms (default), 10ms, 50ms, or 100ms.