SLAA494B May   2011  – September 2023 MSP430AFE221 , MSP430AFE222 , MSP430AFE223 , MSP430AFE231 , MSP430AFE232 , MSP430AFE233 , MSP430AFE251 , MSP430AFE252 , MSP430AFE253

 

  1.   1
  2.   Implementation of a Single-Phase Electronic Watt-Hour Meter Using the MSP430AFE2xx
  3. Trademarks
  4. Introduction
  5. Block Diagram
  6. Hardware Implementation
    1. 4.1 Power Supply
      1. 4.1.1 Resistor Capacitor (RC) Power Supply
      2. 4.1.2 Switching-Based Power Supply
    2. 4.2 Analog Inputs
      1. 4.2.1 Voltage Inputs
      2. 4.2.2 Current Inputs
  7. Software Implementation
    1. 5.1 Peripherals Setup
      1. 5.1.1 SD24 Setup
    2. 5.2 Foreground Process
      1. 5.2.1 Formulas
        1. 5.2.1.1 Voltage and Current
        2. 5.2.1.2 Power and Energy
    3. 5.3 The Background Process
      1. 5.3.1 Voltage and Current Signals
      2. 5.3.2 Phase Compensation
      3. 5.3.3 Frequency Measurement and Cycle Tracking
      4. 5.3.4 LED Pulse Generation
    4. 5.4 Energy Meter Configuration
  8. Energy Meter Demo
    1. 6.1 EVM Overview
      1. 6.1.1 Connections to the Test Setup or AC Voltages
      2. 6.1.2 Power Supply Options
    2. 6.2 Loading the Example Code
      1. 6.2.1 Opening the Project
  9. Results
    1. 7.1 Viewing Results on PC
    2. 7.2 Viewing Results During Debug
  10. Important Notes
  11. Schematics
  12. 10References
  13. 11Revision History

Connections to the Test Setup or AC Voltages

AC voltage or currents can be applied to the board for testing purposes at these points:

  • L and N for voltage inputs. This can be up to 240 V ac 50/60 Hz.
  • CUR1+ and CUR1- are the current inputs after the sensors. When CT or shunts are used, make sure that the voltages across CUR1+ and CUR1- do not exceed 500 mV.
  • CUR2+ and CUR2- can also be used as current inputs after the sensors. When CT or shunts are used, make sure that the voltages across CUR2+ and CUR2- do not exceed 500 mV.