SLAA534A June   2013  – June 2020

 

  1. Introduction
    1. 1.1  ABIs for the MSP430
    2. 1.2  Scope
    3. 1.3  ABI Variants
    4. 1.4  Toolchains and Interoperability
    5. 1.5  Libraries
    6. 1.6  Types of Object Files
    7. 1.7  Segments
    8. 1.8  MSP430 Architecture Overview
    9. 1.9  MSP430 Memory Models
    10. 1.10 Reference Documents
    11. 1.11 Code Fragment Notation
  2. Data Representation
    1. 2.1 Basic Types
    2. 2.2 Data in Registers
    3. 2.3 Data in Memory
    4. 2.4 Pointer Types
    5. 2.5 Complex Types
    6. 2.6 Structures and Unions
    7. 2.7 Arrays
    8. 2.8 Bit Fields
      1. 2.8.1 Volatile Bit Fields
    9. 2.9 Enumeration Types
  3. Calling Conventions
    1. 3.1 Call and Return
      1. 3.1.1 Call Instructions
        1. 3.1.1.1 Indirect Calls
        2. 3.1.1.2 Direct Calls
      2. 3.1.2 Return Instruction
      3. 3.1.3 Pipeline Conventions
      4. 3.1.4 Weak Functions
    2. 3.2 Register Conventions
      1. 3.2.1 Argument Registers
      2. 3.2.2 Callee-Saved Registers
    3. 3.3 Argument Passing
      1. 3.3.1 Register Singles
      2. 3.3.2 Register Pairs
      3. 3.3.3 Split Pairs
      4. 3.3.4 Quads (Four-Register Arguments)
      5. 3.3.5 Special Convention for Compiler Helper Functions
      6. 3.3.6 C++ Argument Passing
      7. 3.3.7 Passing Structs and Unions
      8. 3.3.8 Stack Layout of Arguments Not Passed in Registers
      9. 3.3.9 Frame Pointer
    4. 3.4 Return Values
    5. 3.5 Structures and Unions Passed and Returned by Reference
    6. 3.6 Conventions for Compiler Helper Functions
    7. 3.7 Scratch Registers for Functions Already Seen
    8. 3.8 _ _mspabi_func_epilog Helper Functions
    9. 3.9 Interrupt Functions
  4. Data Allocation and Addressing
    1. 4.1 Data Sections and Segments
    2. 4.2 Addressing Modes
    3. 4.3 Allocation and Addressing of Static Data
      1. 4.3.1 Addressing Methods for Static Data
        1. 4.3.1.1 Absolute Addressing
        2. 4.3.1.2 Symbolic Addressing
        3. 4.3.1.3 Immediate Addressing
      2. 4.3.2 Placement Conventions for Static Data
        1. 4.3.2.1 Abstract Conventions for Placement
        2. 4.3.2.2 Abstract Conventions for Addressing
      3. 4.3.3 Initialization of Static Data
    4. 4.4 Automatic Variables
    5. 4.5 Frame Layout
      1. 4.5.1 Stack Alignment
      2. 4.5.2 Register Save Order
    6. 4.6 Heap-Allocated Objects
  5. Code Allocation and Addressing
    1. 5.1 Computing the Address of a Code Label
      1. 5.1.1 Absolute Addressing for Code
      2. 5.1.2 Symbolic Addressing
      3. 5.1.3 Immediate Addressing
    2. 5.2 Branching
    3. 5.3 Calls
      1. 5.3.1 Direct Call
      2. 5.3.2 Far Call Trampoline
      3. 5.3.3 Indirect Calls
  6. Helper Function API
    1. 6.1 Floating-Point Behavior
    2. 6.2 C Helper Function API
    3. 6.3 Special Register Conventions for Helper Functions
    4. 6.4 Floating-Point Helper Functions for C99
  7. Standard C Library API
    1. 7.1  Reserved Symbols
    2. 7.2  <assert.h> Implementation
    3. 7.3  <complex.h> Implementation
    4. 7.4  <ctype.h> Implementation
    5. 7.5  <errno.h> Implementation
    6. 7.6  <float.h> Implementation
    7. 7.7  <inttypes.h> Implementation
    8. 7.8  <iso646.h> Implementation
    9. 7.9  <limits.h> Implementation
    10. 7.10 <locale.h> Implementation
    11. 7.11 <math.h> Implementation
    12. 7.12 <setjmp.h> Implementation
    13. 7.13 <signal.h> Implementation
    14. 7.14 <stdarg.h> Implementation
    15. 7.15 <stdbool.h> Implementation
    16. 7.16 <stddef.h> Implementation
    17. 7.17 <stdint.h> Implementation
    18. 7.18 <stdio.h> Implementation
    19. 7.19 <stdlib.h> Implementation
    20. 7.20 <string.h> Implementation
    21. 7.21 <tgmath.h> Implementation
    22. 7.22 <time.h> Implementation
    23. 7.23 <wchar.h> Implementation
    24. 7.24 <wctype.h> Implementation
  8. C++ ABI
    1. 8.1  Limits (GC++ABI 1.2)
    2. 8.2  Export Template (GC++ABI 1.4.2)
    3. 8.3  Data Layout (GC++ABI Chapter 2)
    4. 8.4  Initialization Guard Variables (GC++ABI 2.8)
    5. 8.5  Constructor Return Value (GC++ABI 3.1.5)
    6. 8.6  One-Time Construction API (GC++ABI 3.3.2)
    7. 8.7  Controlling Object Construction Order (GC++ ABI 3.3.4)
    8. 8.8  Demangler API (GC++ABI 3.4)
    9. 8.9  Static Data (GC++ ABI 5.2.2)
    10. 8.10 Virtual Tables and the Key function (GC++ABI 5.2.3)
    11. 8.11 Unwind Table Location (GC++ABI 5.3)
  9. Exception Handling
    1. 9.1  Overview
    2. 9.2  PREL31 Encoding
    3. 9.3  The Exception Index Table (EXIDX)
      1. 9.3.1 Pointer to Out-of-Line EXTAB Entry
      2. 9.3.2 EXIDX_CANTUNWIND
      3. 9.3.3 Inlined EXTAB Entry
    4. 9.4  The Exception Handling Instruction Table (EXTAB)
      1. 9.4.1 EXTAB Generic Model
      2. 9.4.2 EXTAB Compact Model
      3. 9.4.3 Personality Routines
    5. 9.5  Unwinding Instructions
      1. 9.5.1 Common Sequence
      2. 9.5.2 Byte-Encoded Unwinding Instructions
    6. 9.6  Descriptors
      1. 9.6.1 Encoding of Type Identifiers
      2. 9.6.2 Scope
      3. 9.6.3 Cleanup Descriptor
      4. 9.6.4 Catch Descriptor
      5. 9.6.5 Function Exception Specification (FESPEC) Descriptor
    7. 9.7  Special Sections
    8. 9.8  Interaction With Non-C++ Code
      1. 9.8.1 Automatic EXIDX Entry Generation
      2. 9.8.2 Hand-Coded Assembly Functions
    9. 9.9  Interaction With System Features
      1. 9.9.1 Shared Libraries
      2. 9.9.2 Overlays
      3. 9.9.3 Interrupts
    10. 9.10 Assembly Language Operators in the TI Toolchain
  10. 10DWARF
    1. 10.1 DWARF Register Names
    2. 10.2 Call Frame Information
    3. 10.3 Vendor Names
    4. 10.4 Vendor Extensions
  11. 11ELF Object Files (Processor Supplement)
    1. 11.1 Registered Vendor Names
    2. 11.2 ELF Header
    3. 11.3 Sections
      1. 11.3.1 Section Indexes
      2. 11.3.2 Section Types
      3. 11.3.3 Extended Section Header Attributes
      4. 11.3.4 Subsections
      5. 11.3.5 Special Sections
      6. 11.3.6 Section Alignment
    4. 11.4 Symbol Table
      1. 11.4.1 Symbol Types
      2. 11.4.2 Common Block Symbols
      3. 11.4.3 Symbol Names
      4. 11.4.4 Reserved Symbol Names
      5. 11.4.5 Mapping Symbols
    5. 11.5 Relocation
      1. 11.5.1 Relocation Types
        1. 11.5.1.1 Absolute Relocations
        2. 11.5.1.2 PC-Relative Relocations
        3. 11.5.1.3 Relocations in Data Sections
        4. 11.5.1.4 Relocations for MSP430 Instructions
        5. 11.5.1.5 Relocations for MSP430X Instructions
        6. 11.5.1.6 Other Relocation Types
      2. 11.5.2 Relocation Operations
      3. 11.5.3 Relocation of Unresolved Weak References
  12. 12ELF Program Loading and Linking (Processor Supplement)
    1. 12.1 Program Header
      1. 12.1.1 Base Address
      2. 12.1.2 Segment Contents
      3. 12.1.3 Thread-Local Storage
    2. 12.2 Program Loading
  13. 13Build Attributes
    1. 13.1 MSP430 ABI Build Attribute Subsection
    2. 13.2 MSP430 Build Attribute Tags
  14. 14Copy Tables and Variable Initialization
    1. 14.1 Copy Table Format
    2. 14.2 Compressed Data Formats
      1. 14.2.1 RLE
      2. 14.2.2 LZSS Format
    3. 14.3 Variable Initialization
  15. 15Revision History

Copy Table Format

A copy table has the following format:

        typedef struct
        {
           uint16      rec_size;
           uint16      num_recs;
           COPY_RECORD recs[num_recs];
        } COPY_TABLE;

rec_size is a 16-bit unsigned integer that specifies the size in bytes of each copy record in the table.

num_recs is a 16-bit unsigned integer that specifies the number of copy records in the table.

The remainder of the table consists of a vector of copy records. The format of the COPY_RECORD structure depends on the code and data model being used.

For the small data model and small code model:

        typedef struct
        {
           void  * load_addr; /* 16-bit pointer */
           void  * run_addr;  /* 16-bit pointer */
           uint16  size;
        } COPY_RECORD;

For the small data model and large code model:

        typedef struct
        {
           uint32  load_addr; /* 32-bit storage for data or code pointer */
           uint32  run_addr;  /* 32-bit storage for data or code pointer */
           uint32  size;
        } COPY_RECORD;

For the large (or restricted) data model and large code model:

        typedef struct
        {
           void  * load_addr; /* 20-bit pointer */
           void  * run_addr;  /* 20-bit pointer */
           uint32  size;
        } COPY_RECORD;

The load_addr field is the address of the source data in offline storage.

The run_addr field is the destination address to which the data will be copied.

The size field is overloaded:

  • If the size is zero, the load data is compressed. The source data has a format-specific encoding that implies its size. In this case, the first byte of the source data encodes the compression format. The format is encoded as an index into the handler table, which is a table of pointers to handler routines for each format in use.
  • If the size is non-zero, the source data is the exact image of the data to copy; in other words, it is not compressed. The copy-in operation is to simply copy sizebytes from the load address to the run address.

The rest of the source data is format-specific. The copy-in routine reads the first byte of the source data to determine its format/index, uses that value to index into the handler table, and invokes the handler to finish decompressing and copying the data.

The handler table has the following format:

GUID-C8C7438B-F068-4366-B469-AE67D356DDE2-low.gifFigure 14-1 Handler Table Format

The copy-in routine references the table via special linker-defined symbols as shown. The assignment of handler indexes is not fixed; the linker reassigns indices for each application depending on what decompression routines are needed for that application. The handler table is generated into the .cinit section of the executable file.

The run-time support library in the TI toolchain contains handler functions for all the supported compression formats. The first argument to the handler function is the address pointing to the byte after the 8-bit index. The second argument is the destination address.

Reference Implementation of Copy-In Function provides a reference implementation of the copy_in function:

Reference Implementation of Copy-In Function

typedef void (*handler_fptr)(const unsigned char *src, unsigned char *dst);
extern int __TI_Handler_Table_Base;
void copy_in(COPY_TABLE *tp)
{
   unsigned short i;
   for (i = 0; i < tp->num_recs; i++)
   {
      COPY_RECORD crp = tp->recs[i];
      const unsigned char *ld_addr = (const unsigned char *)crp.load_addr;
      unsigned char       *rn_addr = (unsigned char *)crp.run_addr;
      if (crp.size)       // not compressed, just copy the data.
         memcpy(rn_addr, ld_addr, crp.size);
      else                // invoke decompression routine
      {
         unsigned char index = *ld_addr++;
         handler_fptr  hndl  = ((handler_fptr *)(__TI_Handler_Table_Base))[index];
        (*hndl)(ld_addr, rn_addr);
      }
   }
}