SLOS052E October   1987  – July 2025 TLC27L2 , TLC27L2A , TLC27L2B , TLC27L2M , TLC27L7

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  Dissipation Ratings
    3. 5.3  Recommended Operating Conditions
    4. 5.4  Electrical Characteristics, VDD = 5V, C Suffix
    5. 5.5  Operating Characteristics, VDD = 5V, C Suffix
    6. 5.6  Electrical Characteristics, VDD = 10V, C Suffix
    7. 5.7  Operating Characteristics, VDD = 10V, C Suffix
    8. 5.8  Electrical Characteristics, VDD = 5V, I Suffix
    9. 5.9  Operating Characteristics, VDD = 5V, I Suffix
    10. 5.10 Electrical Characteristics, VDD = 10V, I Suffix
    11. 5.11 Operating Characteristics, VDD = 10V, I Suffix
    12. 5.12 Electrical Characteristics, VDD = 5V, M Suffix
    13. 5.13 Operating Characteristics, VDD = 5V, M Suffix
    14. 5.14 Electrical Characteristics, VDD = 10V, M Suffix
    15. 5.15 Operating Characteristics, VDD = 10V, M Suffix
    16. 5.16 Typical Characteristics
  7. Parameter Measurement Information
    1. 6.1 Single-Supply Versus Split-Supply Test Circuits
    2. 6.2 Input Bias Current
    3. 6.3 Low-Level Output Voltage
    4. 6.4 Input Offset Voltage Temperature Coefficient
    5. 6.5 Full-Power Response
    6. 6.6 Test Time
  8. Application and Implementation
    1. 7.1 Application Information
      1. 7.1.1 Single-Supply Operation
      2. 7.1.2 Input Characteristics
      3. 7.1.3 Noise Performance
      4. 7.1.4 Feedback
      5. 7.1.5 Electrostatic Discharge Protection
      6. 7.1.6 Latch-Up
      7. 7.1.7 Output Characteristics
      8. 7.1.8 Typical Applications
  9. Device and Documentation Support
    1. 8.1 Receiving Notification of Documentation Updates
    2. 8.2 Support Resources
    3. 8.3 Trademarks
    4. 8.4 Electrostatic Discharge Caution
    5. 8.5 Glossary
  10. Revision History
  11. 10Mechanical, Packaging, and Orderable Information

Latch-Up

CMOS devices are susceptible to latch-up due to inherent parasitic thyristors. With this in mind, the TLC27Lx inputs and output are designed to withstand −100mA surge currents without sustaining latch-up. However, use best practices to reduce the chance of latch-up whenever possible. Do not forward bias internal-protection diodes. Do not exceed the supply voltage by more than 300mV for applied input and output voltages. Exercise care when using capacitive coupling on pulse generators. Shunt supply transients by using decoupling capacitors (0.1µF typical) located across the supply rails as close to the device as possible.

The current path established if latch-up occurs is typically between the positive supply rail and ground, and is triggered by surges on the supply lines, voltages on either the output or inputs that exceed the supply voltage, or both. After latch-up occurs, the current flow is limited only by the impedance of the power supply and the forward resistance of the parasitic thyristor and typically results in the destruction of the device. The chance of latch-up occurring increases with increasing temperature and supply voltages.