SNOS491E February   2000  – March 2025 LM4051-N

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 5.1 Absolute Maximum Ratings
    2. 5.2 ESD Ratings
    3. 5.3 Recommended Operating Conditions
    4. 5.4 Thermal Information
    5. 5.5 LM4051-1.2 Electrical Characteristics
    6. 5.6 LM4051-ADJ Electrical Characteristics
    7. 5.7 Typical Characteristics
  7. Parameter Measurement Information
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
    4. 7.4 Device Functional Modes
      1. 7.4.1 LM4051-N-1.2 V
      2. 7.4.2 LM4051-N - ADJ
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Applications
      1. 8.2.1 Shunt Regulator
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
        3. 8.2.1.3 Application Curves
      2. 8.2.2 Adjustable Shunt Regulator
        1. 8.2.2.1 Design Requirements
        2. 8.2.2.2 Detailed Design Procedure
    3. 8.3 System Examples
    4. 8.4 Power Supply Recommendations
    5. 8.5 Layout
      1. 8.5.1 Layout Guidelines
      2. 8.5.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Receiving Notification of Documentation Updates
    2. 9.2 Support Resources
    3. 9.3 Trademarks
    4. 9.4 Electrostatic Discharge Caution
    5. 9.5 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted)(1)
MINMAXUNIT
Reverse current20mA
Forward current10mA
Maximum output voltage (LM4051-ADJ)15V
Power dissipation (TA = 25°C)(2) M3 package280mW
Lead temperature M3 packagesVapor phase (60 seconds)215°C
Infrared (15 seconds)220
Storage temperature, Tstg–65150°C
Stresses beyond those listed under Absolute Maximum Ratings can cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods can affect device reliability.
The maximum power dissipation must be derated at elevated temperatures and is dictated by TJmax (maximum junction temperature), θJA (junction to ambient thermal resistance), and TA (ambient temperature). The maximum allowable power dissipation at any temperature is PDmax= (TJmax −TA )/ θJA or the number given in the Section 5.1, whichever is lower. For the LM4051-N, TJmax = 125°̊C, and the typical thermal resistance (θJA), when board mounted, is 280°C/W for the SOT-23 package.