TL16C2752

現行

具 64 位元組 FIFO 的 1.8-V 至 5-V 雙路 UART

產品詳細資料

Number of channels 2 FIFO (Byte) 64 Rx FIFO trigger levels (#) 4 Tx FIFO trigger levels (#) 4 Programmable FIFO trigger levels Yes CPU interface X86 Baud rate at Vcc = 2.5 V & with 16x sampling (max) (MBps) 1.5 Baud rate at Vcc = 1.8 V & with 16x sampling (max) (MBps) 1 Baud rate at Vcc = 3.3 V & with 16x sampling (max) (MBps) 2 Baud rate at Vcc = 5 V & with 16x sampling (max) (MBps) 3 Operating voltage (V) 1.8, 2.5, 3.3, 5 Auto RTS/CTS Yes Rating Catalog Operating temperature range (°C) -40 to 85
Number of channels 2 FIFO (Byte) 64 Rx FIFO trigger levels (#) 4 Tx FIFO trigger levels (#) 4 Programmable FIFO trigger levels Yes CPU interface X86 Baud rate at Vcc = 2.5 V & with 16x sampling (max) (MBps) 1.5 Baud rate at Vcc = 1.8 V & with 16x sampling (max) (MBps) 1 Baud rate at Vcc = 3.3 V & with 16x sampling (max) (MBps) 2 Baud rate at Vcc = 5 V & with 16x sampling (max) (MBps) 3 Operating voltage (V) 1.8, 2.5, 3.3, 5 Auto RTS/CTS Yes Rating Catalog Operating temperature range (°C) -40 to 85
PLCC (FN) 44 307.3009 mm² 17.53 x 17.53
  • Larger FIFOs Reduce CPU Overhead
  • Programmable Auto-RTS and Auto-CTS
  • In Auto-CTS Mode, CTS Controls the Transmitter
  • In Auto-RTS Mode, RCV FIFO Contents, and Threshold Control RTS
  • Serial and Modem Control Outputs Drive a RJ11 Cable Directly When Equipment is on the Same Power Drop
  • Capable of Running With All Existing TL16C450 Software
  • After Reset, All Registers Are Identical to the TL16C450 Register Set
  • Up to 48-MHz Clock Rate for up to 3-Mbps (Standard 16× Sampling) Operation, or up to
    6-Mbps (Optional 8× Sampling) Operation With VCC = 5 V Nominal
  • Up to 32-MHz Clock Rate for up to 2-Mbps (Standard 16× Sampling) Operation, or up to
    4-Mbps (Optional 8× Sampling) Operation With VCC = 3.3 V Nominal
  • Up to 24-MHz Clock Rate for up to 1.5-Mbps (Standard 16× Sampling) Operation, or up to
    3-Mbps (Optional 8× Sampling) Operation With VCC = 2.5 V Nominal
  • Up to 16-MHz Clock Rate for up to 1-Mbps (Standard 16× Sampling) Operation, or up to 2-Mbps (Optional 8× Sampling) Operation With VCC = 1.8 V Nominal
  • In TL16C450 Mode, Hold and Shift Registers Eliminate the Need for Precise Synchronization Between the CPU and Serial Data
  • Programmable Baud-Rate Generator Allows Division of Any Input Reference Clock by 1 to (216 – 1) and Generates an Internal 16× Clock
  • Standard Asynchronous Communication Bits (Start, Stop, and Parity) Added to or Deleted From the Serial Data Stream
  • 5-V, 3.3-V, 2.5-V, and 1.8-V Operation
  • Independent Receiver Clock Input
  • Transmit, Receive, Line Status, and Data Set Interrupts Independently Controlled
  • Fully Programmable Serial Interface Characteristics
    • 5-, 6-, 7-, or 8-Bit Characters
    • Even-, Odd-, or No-Parity Bit Generation and Detection
    • 1-, 1 =-, or 2-Stop Bit Generation
    • Baud Generation (DC to 1 Mbit/s)
  • False-Start Bit Detection
  • Complete Status Reporting Capabilities
  • 3-State Output TTL Drive Capabilities for Bidirectional Data Bus and Control Bus
  • Line Break Generation and Detection
  • Internal Diagnostic Capabilities
    • Loopback Controls for Communications Link Fault Isolation
    • Break, Parity, Overrun, and Framing Error Simulation
  • Fully Prioritized Interrupt System Controls
  • Modem Control Functions (CTS, RTS, DSR, DTR, RI, and DCD)
  • Available in 44-Pin PLCC (FN) or 32-Pin QFN (RHB) Packages
  • Each UART’s Internal Register Set May Be Written Concurrently to Save Setup Time
  • Multifunction (MF) Output Allows Users to Select Among Several Functions, Saving Package Pins
  • APPLICATIONS
    • Point-of-Sale Terminals
    • Gaming Terminals
    • Portable Applications
    • Router Control
    • Cellular Data
    • Factory Automation

  • Larger FIFOs Reduce CPU Overhead
  • Programmable Auto-RTS and Auto-CTS
  • In Auto-CTS Mode, CTS Controls the Transmitter
  • In Auto-RTS Mode, RCV FIFO Contents, and Threshold Control RTS
  • Serial and Modem Control Outputs Drive a RJ11 Cable Directly When Equipment is on the Same Power Drop
  • Capable of Running With All Existing TL16C450 Software
  • After Reset, All Registers Are Identical to the TL16C450 Register Set
  • Up to 48-MHz Clock Rate for up to 3-Mbps (Standard 16× Sampling) Operation, or up to
    6-Mbps (Optional 8× Sampling) Operation With VCC = 5 V Nominal
  • Up to 32-MHz Clock Rate for up to 2-Mbps (Standard 16× Sampling) Operation, or up to
    4-Mbps (Optional 8× Sampling) Operation With VCC = 3.3 V Nominal
  • Up to 24-MHz Clock Rate for up to 1.5-Mbps (Standard 16× Sampling) Operation, or up to
    3-Mbps (Optional 8× Sampling) Operation With VCC = 2.5 V Nominal
  • Up to 16-MHz Clock Rate for up to 1-Mbps (Standard 16× Sampling) Operation, or up to 2-Mbps (Optional 8× Sampling) Operation With VCC = 1.8 V Nominal
  • In TL16C450 Mode, Hold and Shift Registers Eliminate the Need for Precise Synchronization Between the CPU and Serial Data
  • Programmable Baud-Rate Generator Allows Division of Any Input Reference Clock by 1 to (216 – 1) and Generates an Internal 16× Clock
  • Standard Asynchronous Communication Bits (Start, Stop, and Parity) Added to or Deleted From the Serial Data Stream
  • 5-V, 3.3-V, 2.5-V, and 1.8-V Operation
  • Independent Receiver Clock Input
  • Transmit, Receive, Line Status, and Data Set Interrupts Independently Controlled
  • Fully Programmable Serial Interface Characteristics
    • 5-, 6-, 7-, or 8-Bit Characters
    • Even-, Odd-, or No-Parity Bit Generation and Detection
    • 1-, 1 =-, or 2-Stop Bit Generation
    • Baud Generation (DC to 1 Mbit/s)
  • False-Start Bit Detection
  • Complete Status Reporting Capabilities
  • 3-State Output TTL Drive Capabilities for Bidirectional Data Bus and Control Bus
  • Line Break Generation and Detection
  • Internal Diagnostic Capabilities
    • Loopback Controls for Communications Link Fault Isolation
    • Break, Parity, Overrun, and Framing Error Simulation
  • Fully Prioritized Interrupt System Controls
  • Modem Control Functions (CTS, RTS, DSR, DTR, RI, and DCD)
  • Available in 44-Pin PLCC (FN) or 32-Pin QFN (RHB) Packages
  • Each UART’s Internal Register Set May Be Written Concurrently to Save Setup Time
  • Multifunction (MF) Output Allows Users to Select Among Several Functions, Saving Package Pins
  • APPLICATIONS
    • Point-of-Sale Terminals
    • Gaming Terminals
    • Portable Applications
    • Router Control
    • Cellular Data
    • Factory Automation

The TL16C2752 is a speed and functional upgrade of the TL16C2552. Since they are pinout and software compatible, designs can easily migrate from the TL16C2552 to the TL16C2752 if needed. The additional functionality within the TL16C2752 is accessed via an extended register set. Some of the key new features are larger receive and transmit FIFOs, embedded IrDA encoders and decoders, RS-485 transceiver controls, software flow control (Xon/Xoff) modes, programmable transmit FIFO thresholds, extended receive and transmit threshold levels for interrupts, and extended receive threshold levels for flow control halt/resume operation.

The TL16C2752 is a dual universal asynchronous receiver and transmitter (UART). It incorporates the functionality of two independent UARTs: each UART having its own register set and transmit and receive FIFOs. The two UARTs share only the data bus interface and clock source, otherwise they operate independently. Another name for the UART function is asynchronous communications element (ACE), and these terms will be used interchangeably. The bulk of this document describes the behavior of each ACE, with the understanding that two such devices are incorporated into the TL16C2752.

Functionally equivalent to the TL16C450 on power up or reset (single character or TL16C450 mode), each ACE can be placed in an alternate FIFO mode. This relieves the CPU of excessive software overhead by buffering received and to-be-transmitted characters. Each receiver and transmitter store up to 64 bytes in their respective FIFOs, with the receive FIFO including three additional bits per byte for error status. In the FIFO mode, selectable hardware or software autoflow control features can significantly reduce program overload and increase system efficiency by automatically controlling serial data flow.

Each ACE performs serial-to-parallel conversions on data received from a peripheral device or modem and stores the parallel data in its receive buffer or FIFO, and each ACE performs parallel-to-serial conversions on data sent from its CPU after storing the parallel data in its transmit buffer or FIFO. The CPU can read the status of either ACE at any time. Each ACE includes complete modem control capability and a processor interrupt system that can be tailored to the application.

Each ACE includes a programmable baud rate generator capable of dividing a reference clock with divisors of from 1 to 65535, thus producing a 16× or 8× internal reference clock for the transmitter and receiver logic. Each ACE accommodates up to a 3-Mbaud serial data rate (48-MHz input clock). As a reference point, that speed would generate a 333-ns bit time and a 3.33-=s character time (for 8,N,1 serial data), with the internal clock running at 48 MHz and 16× sampling.

Each ACE has a TXRDY and RXRDY (via MF) output that can be used to interface to a DMA controller.

The TL16C2752 is a speed and functional upgrade of the TL16C2552. Since they are pinout and software compatible, designs can easily migrate from the TL16C2552 to the TL16C2752 if needed. The additional functionality within the TL16C2752 is accessed via an extended register set. Some of the key new features are larger receive and transmit FIFOs, embedded IrDA encoders and decoders, RS-485 transceiver controls, software flow control (Xon/Xoff) modes, programmable transmit FIFO thresholds, extended receive and transmit threshold levels for interrupts, and extended receive threshold levels for flow control halt/resume operation.

The TL16C2752 is a dual universal asynchronous receiver and transmitter (UART). It incorporates the functionality of two independent UARTs: each UART having its own register set and transmit and receive FIFOs. The two UARTs share only the data bus interface and clock source, otherwise they operate independently. Another name for the UART function is asynchronous communications element (ACE), and these terms will be used interchangeably. The bulk of this document describes the behavior of each ACE, with the understanding that two such devices are incorporated into the TL16C2752.

Functionally equivalent to the TL16C450 on power up or reset (single character or TL16C450 mode), each ACE can be placed in an alternate FIFO mode. This relieves the CPU of excessive software overhead by buffering received and to-be-transmitted characters. Each receiver and transmitter store up to 64 bytes in their respective FIFOs, with the receive FIFO including three additional bits per byte for error status. In the FIFO mode, selectable hardware or software autoflow control features can significantly reduce program overload and increase system efficiency by automatically controlling serial data flow.

Each ACE performs serial-to-parallel conversions on data received from a peripheral device or modem and stores the parallel data in its receive buffer or FIFO, and each ACE performs parallel-to-serial conversions on data sent from its CPU after storing the parallel data in its transmit buffer or FIFO. The CPU can read the status of either ACE at any time. Each ACE includes complete modem control capability and a processor interrupt system that can be tailored to the application.

Each ACE includes a programmable baud rate generator capable of dividing a reference clock with divisors of from 1 to 65535, thus producing a 16× or 8× internal reference clock for the transmitter and receiver logic. Each ACE accommodates up to a 3-Mbaud serial data rate (48-MHz input clock). As a reference point, that speed would generate a 333-ns bit time and a 3.33-=s character time (for 8,N,1 serial data), with the internal clock running at 48 MHz and 16× sampling.

Each ACE has a TXRDY and RXRDY (via MF) output that can be used to interface to a DMA controller.

下載 觀看有字幕稿的影片 影片

技術文件

star =TI 所選的此產品重要文件
找不到結果。請清除您的搜尋條件,然後再試一次。
檢視所有 3
類型 標題 日期
* Data sheet 1.8-V to 5-V Dual UART With 64-Byte FIFOs datasheet (Rev. A) 2008年 9月 29日
* Errata Short STOP Bit Errata (Rev. A) 2010年 10月 8日
Product overview UART Quick Reference Card (Rev. D) 2008年 4月 9日

設計與開發

如需其他條款或必要資源,請按一下下方的任何標題以檢視詳細頁面 (如有)。

模擬型號

TL16C2752FN IBIS 33V Model (Rev. A)

SLLM029A.ZIP (49 KB) - IBIS Model
模擬型號

TL16C2752FN IBIS 25V Model (Rev. A)

SLLM028A.ZIP (49 KB) - IBIS Model
模擬型號

TL16C2752FN IBIS 5V Model (Rev. A)

SLLM027A.ZIP (49 KB) - IBIS Model
模擬工具

PSPICE-FOR-TI — PSpice® for TI 設計與模擬工具

PSpice® for TI is a design and simulation environment that helps evaluate functionality of analog circuits. This full-featured, design and simulation suite uses an analog analysis engine from Cadence®. Available at no cost, PSpice for TI includes one of the largest model libraries in the (...)
模擬工具

TINA-TI — 基於 SPICE 的類比模擬程式

TINA-TI provides all the conventional DC, transient and frequency domain analysis of SPICE and much more. TINA has extensive post-processing capability that allows you to format results the way you want them. Virtual instruments allow you to select input waveforms and probe circuit nodes voltages (...)
使用指南: PDF
封裝 引腳 下載
PLCC (FN) 44 檢視選項

訂購與品質

內含資訊:
  • RoHS
  • REACH
  • 產品標記
  • 鉛塗層/球物料
  • MSL 等級/回焊峰值
  • MTBF/FIT 估算值
  • 材料內容
  • 資格摘要
  • 進行中可靠性監測
內含資訊:
  • 晶圓廠位置
  • 組裝地點

支援與培訓

內含 TI 工程師技術支援的 TI E2E™ 論壇

內容係由 TI 和社群貢獻者依「現狀」提供,且不構成 TI 規範。檢視使用條款

若有關於品質、封裝或訂購 TI 產品的問題,請參閱 TI 支援。​​​​​​​​​​​​​​

影片