SCES681E January   2008  – April 2024 SN74AUP2G08

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Pin Configuration and Functions
  6. Specifications
    1. 5.1  Absolute Maximum Ratings
    2. 5.2  ESD Ratings
    3. 5.3  Recommended Operating Conditions
    4. 5.4  Thermal Resistance Characteristics
    5. 5.5  Electrical Characteristics
    6. 5.6  Switching Characteristics - CL = 5 pF
    7. 5.7  Switching Characteristics - CL = 10 pF
    8. 5.8  Switching Characteristics - CL = 15 pF
    9. 5.9  Switching Characteristics - CL = 30 pF
    10. 5.10 Operating Characteristics
    11. 5.11 Typical Characteristics
  7. Parameter Measurement Information
    1. 6.1 19
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Balanced CMOS Push-Pull Outputs
      2. 7.3.2 CMOS Schmitt-Trigger Inputs
      3. 7.3.3 Partial Power Down (Ioff)
      4. 7.3.4 Standard CMOS Inputs
      5. 7.3.5 Clamp Diode Structure
    4. 7.4 Device Functional Modes
  9. Application and Implementation
    1. 8.1 Application Information
    2. 8.2 Typical Application
      1. 8.2.1 Design Requirements
        1. 8.2.1.1 Power Considerations
        2. 8.2.1.2 Input Considerations
        3. 8.2.1.3 Output Considerations
      2. 8.2.2 Detailed Design Procedure
      3. 8.2.3 Application Curves
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
      2. 8.4.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Receiving Notification of Documentation Updates
    2. 9.2 Support Resources
    3. 9.3 Trademarks
    4. 9.4 Electrostatic Discharge Caution
    5. 9.5 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Overview

The AUP family is TI's premier solution to the industry's low-power needs in battery-powered portable applications. This family ensures a very low static- and dynamic-power consumption across the entire VCC range of 0.8 V to 3.6 V, resulting in increased battery life. This product also maintains excellent signal integrity.

This dual 2-input positive-AND gate is designed for 0.8-V to 3.6-V VCC operation and performs the Boolean function Y = A ● B in positive logic.

This device is fully specified for partial-power-down applications using Ioff. The Ioff circuitry disables the outputs, preventing damaging current backflow through the device when it is powered down.