SLVSCC3C May   2014  – July 2019 TPS62150A-Q1 , TPS62152A-Q1 , TPS62153A-Q1

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Device Images
      1.      Typical Application Schematic space space space
      2.      Efficiency vs Output Current space
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
    1.     Pin Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 Handling Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Typical Characteristics
  8. Parameter Measurement Information
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1  Pulse Width Modulation (PWM) Operation
      2. 9.3.2  Power Save Mode Operation
      3. 9.3.3  100% Duty-Cycle Operation
      4. 9.3.4  Enable / Shutdown (EN)
      5. 9.3.5  Soft Start / Tracking (SS/TR)
      6. 9.3.6  Current Limit And Short Circuit Protection
      7. 9.3.7  Power Good (PG)
      8. 9.3.8  Pin-Selectable Output Voltage (DEF)
      9. 9.3.9  Frequency Selection (FSW)
      10. 9.3.10 Under Voltage Lockout (UVLO)
      11. 9.3.11 Thermal Shutdown
    4. 9.4 Device Functional Modes
      1. 9.4.1 Operation above TJ=125°C
      2. 9.4.2 Operation with VIN < 3V
      3. 9.4.3 Operation with separate EN Control
  10. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Application
      1. 10.2.1 TPS62150A-Q1 Point-Of-Load Step Down Converter
        1. 10.2.1.1 Design Requirements
        2. 10.2.1.2 Detailed Design Procedure
          1. 10.2.1.2.1 Custom Design With WEBENCH® Tools
          2. 10.2.1.2.2 Programming The Output Voltage
          3. 10.2.1.2.3 External Component Selection
          4. 10.2.1.2.4 Inductor Selection
          5. 10.2.1.2.5 Output Capacitor
          6. 10.2.1.2.6 Input Capacitor
          7. 10.2.1.2.7 Soft Start Capacitor
          8. 10.2.1.2.8 Tracking Function
          9. 10.2.1.2.9 Output Filter And Loop Stability
        3. 10.2.1.3 Application Curves
      2. 10.2.2 System Examples
        1. 10.2.2.1 Regulated Power LED Supply
        2. 10.2.2.2 Inverting Power Supply
        3. 10.2.2.3 Active Output Discharge
        4. 10.2.2.4 Various Output Voltages
  11. 11Power Supply Recommendations
  12. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Example
  13. 13Device and Documentation Support
    1. 13.1 Device Support
      1. 13.1.1 Third-Party Products Disclaimer
    2. 13.2 Related Links
    3. 13.3 Receiving Notification of Documentation Updates
    4. 13.4 Community Resources
    5. 13.5 Trademarks
    6. 13.6 Electrostatic Discharge Caution
    7. 13.7 Glossary
  14. 14Mechanical, Packaging, and Orderable Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • RGT|16
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Frequency Selection (FSW)

To get high power density with very small solution size, a high switching frequency allows the use of small external components for the output filter. However switching losses increase with the switching frequency. If efficiency is the key parameter, more than solution size, the switching frequency can be set to half (1.25 MHz typ.) by pulling FSW to High. Running with lower frequency a higher efficiency, but also a higher output voltage ripple, is achieved. Pull FSW to Low for high frequency operation (2.5 MHz typ.). To get low ripple and full output current at the lower switching frequency, it's recommended to use an inductor of at least 2.2uH. The switching frequency can be changed during operation, if needed. A pull down resistor of about 400kΩ is internally connected to the pin, acting the same way as at the DEF Pin (see Pin-Selectable Output Voltage (DEF) above).