JAJU858 December   2022

 

  1.   概要
  2.   リソース
  3.   特長
  4.   アプリケーション
  5.   5
  6. 1System Description
    1.     7
    2. 1.1 EV Charging Station Challenges
      1. 1.1.1 SAE J1772 or Equivalent Standard Compliant EV Charging Stations
      2. 1.1.2 AC and DC Leakage, Residual Current Detection (RCD)
      3. 1.1.3 Efficient Relay and Contactor Drive
      4. 1.1.4 Contact Weld Detection
    3. 1.2 Key System Specifications
  7. 2System Overview
    1. 2.1 Block Diagram
    2. 2.2 Design Considerations
      1. 2.2.1 Isolated AC/DC Power Supply Design
        1. 2.2.1.1  Input Bulk Capacitance and Minimum Bulk Voltage
        2. 2.2.1.2  Transformer Turns-Ratio, Primary Inductance, and Primary Peak Current
        3. 2.2.1.3  Transformer Parameter Calculations: Primary and Secondary RMS Currents
        4. 2.2.1.4  Main Switching Power MOSFET Selection
        5. 2.2.1.5  Rectifying Diode Selection
        6. 2.2.1.6  Output Capacitor Selection
        7. 2.2.1.7  Capacitance on VDD Pin
        8. 2.2.1.8  Open-loop Voltage Regulation Versus Pin Resistor Divider, Line Compensation Resistor
        9. 2.2.1.9  Feedback Elements
        10. 2.2.1.10 Backup Power Supply
        11. 2.2.1.11 Supercapacitor Selection
        12. 2.2.1.12 Supercapacitor Charger Design
      2. 2.2.2 Control Pilot Signal Interface
        1. 2.2.2.1 J1772 Duty Cycle
          1. 2.2.2.1.1 Control Pilot Signal States
          2. 2.2.2.1.2 Control Pilot Signal Circuit
      3. 2.2.3 Relay Drive and Weld Detect
      4. 2.2.4 Residual Current Detection
        1. 2.2.4.1 Auto-Oscillation Circuit
          1.        37
        2. 2.2.4.2 DRV8220 H-Bridge
        3. 2.2.4.3 Saturation Detection Circuit
        4. 2.2.4.4 H-Bridge Controlled by DFF
        5. 2.2.4.5 Filter Stage
        6. 2.2.4.6 Differential to Single-Ended Converter
        7. 2.2.4.7 Low-Pass Filter
        8. 2.2.4.8 Full-Wave Rectifier
        9. 2.2.4.9 MCU Selection
    3. 2.3 Highlighted Products
      1. 2.3.1  UCC28742
      2. 2.3.2  TLV1805
      3. 2.3.3  DRV8220
      4. 2.3.4  ISO1212
      5. 2.3.5  ADC122S051
      6. 2.3.6  TPS7A39
      7. 2.3.7  TPS7A20
      8. 2.3.8  ATL431
      9. 2.3.9  TL431
      10. 2.3.10 TPS563210A
      11. 2.3.11 TPS55330
      12. 2.3.12 TPS259470
      13. 2.3.13 TL7705A
  8. 3Hardware, Testing Requirements, and Test Results
    1. 3.1 Hardware Requirements
    2. 3.2 Test Requirements
      1. 3.2.1 Power Supply Test Setup
      2. 3.2.2 Weld Detect Test Setup
    3. 3.3 Test Results
      1. 3.3.1 Isolated AC/DC Power Supply Based on UCC28742
        1. 3.3.1.1 Efficiency and Output Voltage Cross Regulation
        2. 3.3.1.2 Efficiency and Output Voltage Regulation of TPS563210
        3. 3.3.1.3 Output Voltage Ripple Waveforms
        4. 3.3.1.4 Start, Shutdown, Backup Power, and Transient Response Waveforms
        5. 3.3.1.5 Thermal Performance
      2. 3.3.2 TLV1805-Based Control Pilot Interface
        1. 3.3.2.1 TLV1805 Output Rise and Fall Time
        2. 3.3.2.2 Control Pilot Signal Voltage Accuracy in Different States
      3. 3.3.3 DRV8220-Based Relay and Plug Lock Drive
      4. 3.3.4 ISO1212-Based Isolated Line Voltage Sensing
  9. 4Design and Documentation Support
    1. 4.1 Design Files
      1. 4.1.1 Schematics
      2. 4.1.2 Bill of Materials
    2. 4.2 Documentation Support
    3. 4.3 サポート・リソース
    4. 4.4 Trademarks
  10. 5About the Author

Weld Detect Test Setup

Overview:

  • The system checks for the AC signal via ISO1212 when the relay is open. A normal (unwelded) condition means there are not any output pulses.
  • The system checks for the AC signal via ISO1212 when the relay is closed. A normal (AC present) condition means there are no output pulses.

Complete the following work before powering the TIDA-010239 board.

Connect the AM62_R_ENABLE (pin 36, J2) to 3.3V (TP14_P) to enable the K1 relay at power up.

  • Connect oscilloscope probe 1 to LINE1_IN (TP1_P). There is no need to connect the probe 1 reference clip.
  • Connect oscilloscope probe 2 to RELAY_CHECK_L1 (J2). Connect the probe 2 reference clip to PGND (TP7_P).
  • Connect oscilloscope probe 3 to RELAY_CHECK_L2 (J2). There is no need to connect the probe 3 reference clip.
  • Connect oscilloscope probe 4 to RELAY_CHECK_L3 (J2). There is no need to connect the probe 4 reference clip.
    Note:
    1. The oscilloscope reference clip is tied to earth GND by default and for this test setup the reference clip was connected to PGND. This technically removes the functional isolation of the circuit but does make the functional testing easier. If isolated measurement is required, an isolation transformer can be used to power the scope.
    2. RELAY_CHECK_N (J2) can also be checked if there is more than 4 channels.

Powering the board for measurement:

  • Apply an external 12-V (500 mA) power supply to J1_P so that the relay can be enabled before turning on the AC line power. This prevents potential arcing when you enable the relay. Normally, AC zero crossing detection is required before operating the relay. In this case, we are testing with manual relay control.
  • With the relay already closed, turn on the AC line power supply (240 VRMS) and observe the waveforms on the scope.
  • When finished, turn off the AC line power first before removing the 12-V supply. The backup supercapacitor can keep the relay closed for a while even when the AC line power is disconnected.
  • The measurement can be repeated with the relay open by disconnecting the AM62_R_ENABLE from 3.3V.