產品詳細資料

Number of series cells 1 Charge current (max) (A) 0.1 Vin (max) (V) 3 Cell chemistry Li-Ion/Li-Polymer, SuperCap Battery charge voltage (min) (V) 2.5 Battery charge voltage (max) (V) 5.25 Absolute max Vin (max) (V) 5.5 Control topology Switch-Mode Boost Control interface Standalone (RC-Settable) Features Input OVP, Solar input/MPPT Vin (min) (V) 0.6 Rating Catalog Operating temperature range (°C) -40 to 85
Number of series cells 1 Charge current (max) (A) 0.1 Vin (max) (V) 3 Cell chemistry Li-Ion/Li-Polymer, SuperCap Battery charge voltage (min) (V) 2.5 Battery charge voltage (max) (V) 5.25 Absolute max Vin (max) (V) 5.5 Control topology Switch-Mode Boost Control interface Standalone (RC-Settable) Features Input OVP, Solar input/MPPT Vin (min) (V) 0.6 Rating Catalog Operating temperature range (°C) -40 to 85
VQFN (RGT) 16 9 mm² 3 x 3
  • Ultra low-power with high-efficiency DC-DC boost converter/charger
    • Continuous energy harvesting from low-input sources: V IN ≥ 130 mV (Typical)
    • Ultra-low quiescent current: I Q < 330 nA (Typical)
    • Cold-start voltage: V IN ≥ 600 mV (typical)
  • Programmable dynamic maximum power point tracking (MPPT)
    • Integrated dynamic maximum power point tracking for optimal energy extraction from a variety of energy generation sources
    • Input voltage regulation prevents collapsing input source
  • Energy storage
    • Energy can be stored to rechargeable li-ion batteries, thin-film batteries, super-capacitors, or conventional capacitors
  • Battery charging and protection
    • User Programmable undervoltage and overvoltage levels
    • On-chip temperature sensor with programmable overtemperature shutoff
  • Battery status output
    • Battery good output pin
    • Programmable threshold and hysteresis
    • Warn attached microcontrollers of pending loss of power
    • Can be used to enable or disable system loads
  • Ultra low-power with high-efficiency DC-DC boost converter/charger
    • Continuous energy harvesting from low-input sources: V IN ≥ 130 mV (Typical)
    • Ultra-low quiescent current: I Q < 330 nA (Typical)
    • Cold-start voltage: V IN ≥ 600 mV (typical)
  • Programmable dynamic maximum power point tracking (MPPT)
    • Integrated dynamic maximum power point tracking for optimal energy extraction from a variety of energy generation sources
    • Input voltage regulation prevents collapsing input source
  • Energy storage
    • Energy can be stored to rechargeable li-ion batteries, thin-film batteries, super-capacitors, or conventional capacitors
  • Battery charging and protection
    • User Programmable undervoltage and overvoltage levels
    • On-chip temperature sensor with programmable overtemperature shutoff
  • Battery status output
    • Battery good output pin
    • Programmable threshold and hysteresis
    • Warn attached microcontrollers of pending loss of power
    • Can be used to enable or disable system loads

The BQ25504 device is the first of a new family of intelligent integrated energy harvesting nano-power management solutions that are well suited for meeting the special needs of ultra low power applications. The device is specifically designed to efficiently acquire and manage the microwatts (µW) to miliwatts (mW) of power generated from a variety of DC sources like photovoltaic (solar) or thermal electric generators. The BQ25504 is the first device of its kind to implement a highly efficient boost converter/charger targeted toward products and systems, such as wireless sensor networks (WSNs) which have stringent power and operational demands. The design of the BQ25504 starts with a DC-DC boost converter/charger that requires only microwatts of power to begin operating.

Once started, the boost converter/charger can effectively extract power from low-voltage output harvesters such as thermoelectric generators (TEGs) or single- or dual-cell solar panels. The boost converter can be started with V IN as low as 600 mV, and once started, can continue to harvest energy down to V IN = 130 mV.

The BQ25504 also implements a programmable maximum power point tracking sampling network to optimize the transfer of power into the device. Sampling the VIN_DC open-circuit voltage is programmed using external resistors, and held with an external capacitor (C REF).

For example solar cells that operate at maximum power point (MPP) of 80% of their open-circuit voltage, the resistor divider can be set to 80% of the VIN_DC voltage and the network will control the VIN_DC to operate near that sampled reference voltage. Alternatively, an external reference voltage can be provide by a MCU to produce a more complex MPPT algorithm.

The BQ25504 was designed with the flexibility to support a variety of energy storage elements. The availability of the sources from which harvesters extract their energy can often be sporadic or time-varying. Systems will typically need some type of energy storage element, such as a rechargeable battery, super capacitor, or conventional capacitor. The storage element ensures that constant power is available when needed for the systems. The storage element also allows the system to handle any peak currents that cannot directly come from the input source.

To prevent damage to a customer’s storage element, both maximum and minimum voltages are monitored against the user programmed undervoltage (UV) and overvoltage (OV) levels.

To further assist users in the strict management of their energy budgets, the BQ25504 toggles the battery good flag to signal an attached microprocessor when the voltage on an energy storage battery or capacitor has dropped below a preset critical level. This warning should trigger the shedding of load currents to prevent the system from entering an undervoltage condition. The OV, UV, and battery good thresholds are programmed independently.

All the capabilities of BQ25504 are packed into a small-footprint, 16-lead, 3-mm x 3-mm VQFN package.

The BQ25504 device is the first of a new family of intelligent integrated energy harvesting nano-power management solutions that are well suited for meeting the special needs of ultra low power applications. The device is specifically designed to efficiently acquire and manage the microwatts (µW) to miliwatts (mW) of power generated from a variety of DC sources like photovoltaic (solar) or thermal electric generators. The BQ25504 is the first device of its kind to implement a highly efficient boost converter/charger targeted toward products and systems, such as wireless sensor networks (WSNs) which have stringent power and operational demands. The design of the BQ25504 starts with a DC-DC boost converter/charger that requires only microwatts of power to begin operating.

Once started, the boost converter/charger can effectively extract power from low-voltage output harvesters such as thermoelectric generators (TEGs) or single- or dual-cell solar panels. The boost converter can be started with V IN as low as 600 mV, and once started, can continue to harvest energy down to V IN = 130 mV.

The BQ25504 also implements a programmable maximum power point tracking sampling network to optimize the transfer of power into the device. Sampling the VIN_DC open-circuit voltage is programmed using external resistors, and held with an external capacitor (C REF).

For example solar cells that operate at maximum power point (MPP) of 80% of their open-circuit voltage, the resistor divider can be set to 80% of the VIN_DC voltage and the network will control the VIN_DC to operate near that sampled reference voltage. Alternatively, an external reference voltage can be provide by a MCU to produce a more complex MPPT algorithm.

The BQ25504 was designed with the flexibility to support a variety of energy storage elements. The availability of the sources from which harvesters extract their energy can often be sporadic or time-varying. Systems will typically need some type of energy storage element, such as a rechargeable battery, super capacitor, or conventional capacitor. The storage element ensures that constant power is available when needed for the systems. The storage element also allows the system to handle any peak currents that cannot directly come from the input source.

To prevent damage to a customer’s storage element, both maximum and minimum voltages are monitored against the user programmed undervoltage (UV) and overvoltage (OV) levels.

To further assist users in the strict management of their energy budgets, the BQ25504 toggles the battery good flag to signal an attached microprocessor when the voltage on an energy storage battery or capacitor has dropped below a preset critical level. This warning should trigger the shedding of load currents to prevent the system from entering an undervoltage condition. The OV, UV, and battery good thresholds are programmed independently.

All the capabilities of BQ25504 are packed into a small-footprint, 16-lead, 3-mm x 3-mm VQFN package.

下載 觀看有字幕稿的影片 影片

技術文件

star =TI 所選的此產品重要文件
找不到結果。請清除您的搜尋條件,然後再試一次。
檢視所有 9
類型 標題 日期
* Data sheet BQ25504 Ultra Low-Power Boost Converter With Battery Management For Energy Harvester Applications datasheet (Rev. G) PDF | HTML 2023年 8月 18日
Product overview Battery Management Solutions for Wearable and Fitness Devices (Rev. C) 2014年 8月 18日
Analog Design Journal Accurately measuring efficiency of ultralow-IQ devices 2014年 1月 22日
Product overview Industry’s Most Efficient Nano Power Harvesting Solutions (Rev. A) 2013年 11月 8日
Application note Self-Powered Ambient Light Sensor Using bq25504 (Rev. A) 2013年 10月 19日
Application note Measuring Efficiency of the bq25504 Energy Harvesting Battery Charger 2013年 7月 24日
Product overview Power Bank Charger ICs 2013年 2月 25日
Application note BQ25504 Optimization of MPPT algorithm 2012年 2月 13日
User guide Ultra Low Power Boost Converter Charger Energy Harvester (Rev. A) 2011年 10月 20日

設計與開發

如需其他條款或必要資源,請按一下下方的任何標題以檢視詳細頁面 (如有)。

程式碼範例或展示

SLUC462 Solar App Design Example V1.3, bq25504

支援產品和硬體

支援產品和硬體

產品
電池充電器 IC
BQ25504 適合能源收集裝置 | 奈米功率管理的超低功耗升壓轉換器 (附電池管理功能)
計算工具

SLURAQ1 bq25504 Design Help v1.2

支援產品和硬體

支援產品和硬體

產品
電池充電器 IC
BQ25504 適合能源收集裝置 | 奈米功率管理的超低功耗升壓轉換器 (附電池管理功能)
參考設計

TIDA-00041 — 適用於超低功耗升壓轉換器 IC 的能源採集參考設計解決方案

This reference design is an ultra low power boost converter for energy harvesting Applications. This solution is programmed from the factory for settings compatible with most MCU’s and 3V coin cell batteries. The design is programmed to deliver a 3.1VDC maximum voltage (OV) for charging the (...)
Test report: PDF
電路圖: PDF
封裝 引腳 下載
VQFN (RGT) 16 檢視選項

訂購與品質

內含資訊:
  • RoHS
  • REACH
  • 產品標記
  • 鉛塗層/球物料
  • MSL 等級/回焊峰值
  • MTBF/FIT 估算值
  • 材料內容
  • 資格摘要
  • 進行中可靠性監測
內含資訊:
  • 晶圓廠位置
  • 組裝地點

建議產品可能具有與此 TI 產品相關的參數、評估模組或參考設計。

支援與培訓

內含 TI 工程師技術支援的 TI E2E™ 論壇

內容係由 TI 和社群貢獻者依「現狀」提供,且不構成 TI 規範。檢視使用條款

若有關於品質、封裝或訂購 TI 產品的問題,請參閱 TI 支援。​​​​​​​​​​​​​​

影片