SBAS664B May   2014  – November 2014 ADC34J42 , ADC34J43 , ADC34J44 , ADC34J45

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1  Absolute Maximum Ratings
    2. 7.2  Handling Ratings
    3. 7.3  Recommended Operating Conditions
    4. 7.4  Summary of Special Mode Registers
    5. 7.5  Thermal Information
    6. 7.6  Electrical Characteristics: ADC34J44, ADC34J45
    7. 7.7  Electrical Characteristics: ADC34J42, ADC34J43
    8. 7.8  Electrical Characteristics: General
    9. 7.9  AC Performance: ADC34J45
    10. 7.10 AC Performance: ADC34J44
    11. 7.11 AC Performance: ADC34J43
    12. 7.12 AC Performance: ADC34J42
    13. 7.13 Digital Characteristics
    14. 7.14 Timing Characteristics
    15. 7.15 Typical Characteristics: ADC34J45
    16. 7.16 Typical Characteristics: ADC34J44
    17. 7.17 Typical Characteristics: ADC34J43
    18. 7.18 Typical Characteristics: ADC34J42
    19. 7.19 Typical Characteristics: Common Plots
    20. 7.20 Typical Characteristics: Contour Plots
  8. Parameter Measurement Information
    1. 8.1 Timing Diagrams
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1 Analog Inputs
      2. 9.3.2 Clock Input
        1. 9.3.2.1 SNR and Clock Jitter
        2. 9.3.2.2 Input Clock Divider
      3. 9.3.3 Power-Down Control
      4. 9.3.4 Internal Dither Algorithm
      5. 9.3.5 JESD204B Interface
        1. 9.3.5.1 JESD204B Initial Lane Alignment (ILA)
        2. 9.3.5.2 JESD204B Test Patterns
        3. 9.3.5.3 JESD204B Frame Assembly
        4. 9.3.5.4 Digital Outputs
    4. 9.4 Device Functional Modes
      1. 9.4.1 Digital Gain
      2. 9.4.2 Overrange Indication
    5. 9.5 Programming
      1. 9.5.1 Serial Interface
        1. 9.5.1.1 Register Initialization
          1. 9.5.1.1.1 Serial Register Write
          2. 9.5.1.1.2 Serial Register Readout
      2. 9.5.2 Register Initialization
      3. 9.5.3 Start-Up Sequence
    6. 9.6 Register Map
      1. 9.6.1 Serial Register Description
  10. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Applications
      1. 10.2.1 Driving Circuit Design: Low Input Frequencies
        1. 10.2.1.1 Design Requirements
        2. 10.2.1.2 Detailed Design Procedure
        3. 10.2.1.3 Application Curve
      2. 10.2.2 Driving Circuit Design: Input Frequencies Between 100 MHz to 230 MHz
        1. 10.2.2.1 Design Requirements
        2. 10.2.2.2 Detailed Design Procedure
        3. 10.2.2.3 Application Curve
      3. 10.2.3 Driving Circuit Design: Input Frequencies Greater than 230 MHz
        1. 10.2.3.1 Design Requirements
        2. 10.2.3.2 Detailed Design Procedure
        3. 10.2.3.3 Application Curve
  11. 11Power-Supply Recommendations
  12. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Example
  13. 13Device and Documentation Support
    1. 13.1 Related Links
    2. 13.2 Trademarks
    3. 13.3 Electrostatic Discharge Caution
    4. 13.4 Glossary
  14. 14Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

7 Specifications

7.1 Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)
MIN MAX UNIT
Supply voltage range, AVDD –0.3 2.1 V
Supply voltage range, DVDD –0.3 2.1 V
Voltage applied to input pins: INAP, INBP, INCP, INDP, INAM, INBM, INCM, INDM –0.3 Minimum
(AVDD + 0.3, 2.1)
V
CLKP, CLKM(2) –0.3 Minimum
(AVDD + 0.3, 2.1)
V
SYSREFP, SYSREFM, SYNCP~, SYNCM~ –0.3 Minimum
(AVDD + 0.3, 2.1)
V
SCLK, SEN, SDATA, RESET, PDN –0.3 3.6 V
Temperature range Operating free-air, TA –40 85 °C
Operating junction, TJ 125 °C
(1) Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, which do not imply functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
(2) When AVDD is turned off, TI recommends switching off the input clock (or ensuring the voltage on CLKP, CLKM is less than |0.3 V|). This configuration prevents the ESD protection diodes at the clock input pins from turning on.

7.2 Handling Ratings

MIN MAX UNIT
Tstg Storage temperature range –65 150 °C
V(ESD) Electrostatic discharge Human body model (HBM), per ANSI/ESDA/JEDEC JS-001, all pins(1) 2 kV
(1) JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

7.3 Recommended Operating Conditions(2)

over operating free-air temperature range (unless otherwise noted)
MIN NOM MAX UNIT
SUPPLIES
AVDD Analog supply voltage range 1.7 1.8 1.9 V
DVDD Digital supply voltage range 1.7 1.8 1.9 V
ANALOG INPUT
VID Differential input voltage For input frequencies < 450 MHz 2 VPP
For input frequencies < 600 MHz 1 VPP
VIC Input common-mode voltage VCM ± 0.025 V
CLOCK INPUT
Input clock frequency Sampling clock frequency 15 160(1) MSPS
Input clock amplitude (differential) Sine wave, ac-coupled 0.2 1.5 V
LVPECL, ac-coupled 1.6 V
LVDS, ac-coupled 0.7 V
Input clock duty cycle 35% 50% 65%
Input clock common-mode voltage 0.95 V
DIGITAL OUTPUTS
CLOAD Maximum external load capacitance from each output pin to GND 3.3 pF
RLOAD Single-ended load resistance 50 Ω
(1) With the clock divider enabled by default for divide-by-1. Maximum sampling clock frequency for the divide-by-4 option is 640 MSPS.
(2) After power-up, to reset the device for the first time, only use the RESET pin; see the Register Initialization section.

7.4 Summary of Special Mode Registers

Table 1 lists the location, value, and functions of special mode registers in the device.

Table 1. Special Modes Summary

MODE LOCATION VALUE AND FUNCTION
Dither mode DIS DITH CHA 01h [7:6], 134h[5,3] Creates a noise floor cleaner and improves SFDR; see the Internal Dither Algorithm section.
0000 = Dither disabled
1111 = Dither enabled
DIS DITH CHB 01h [5:4], 434h[5,3]
DIS DITH CHC 01h [3:2], 534h[5,3]
DIS DITH CHD 01h [1:0], 234h[5,3]
Special mode 1 SPECIAL MODE 1 CHA 06h[4:2] Use for better HD3.
000 = Default after reset
010 = Use for frequency < 120 MHz
111 = Use for frequency > 120 MHz
SPECIAL MODE 1 CHB 07h[4:2]
SPECIAL MODE 1 CHC 08h[4:2]
SPECIAL MODE 1 CHD 09h[4:2]
Special mode 2 SPECIAL MODE 2 CHA 122h[1:0] Helps improve HD2.
00 = Default after reset
11 = Improves HD2
SPECIAL MODE 2 CHB 422h[1:0]
SPECIAL MODE 2 CHC 522h[1:0]
SPECIAL MODE 2 CHD 222h[1:0]

7.5 Thermal Information

THERMAL METRIC(1) ADC34J4x UNIT
RGZ (VQFN)
48 PINS
RθJA Junction-to-ambient thermal resistance 25.7 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 18.9
RθJB Junction-to-board thermal resistance 3.0
ψJT Junction-to-top characterization parameter 0.2
ψJB Junction-to-board characterization parameter 3
RθJC(bot) Junction-to-case (bottom) thermal resistance 0.5
(1) For more information about traditional and new thermal metrics, see the IC Package Thermal Metrics application report, SPRA953.

7.6 Electrical Characteristics: ADC34J44, ADC34J45

Typical values are at TA = 25°C, full temperature range is TMIN = –40°C to TMAX = 85°C, maximum sampling rate, 50% clock duty cycle, AVDD = DVDD = 1.8 V, and –1-dBFS differential input, unless otherwise noted.
PARAMETER ADC34J44 ADC34J45 UNIT
MIN TYP MAX MIN TYP MAX
ADC clock frequency 125 160 MSPS
Resolution 14 14 Bits
1.8-V analog supply (AVDD) current 318 354 490 mA
1.8-V digital supply current 79 97 150 mA
Total power dissipation 715 812 1010 mW
Global power-down dissipation 22 22 mW
Wake-up time from global power-down 85 85 100 µs
Standby power-down dissipation 177 185 mW
Wake-up time from standby power-down 35 35 300 µs

7.7 Electrical Characteristics: ADC34J42, ADC34J43

Typical values are at TA = 25°C, full temperature range is TMIN = –40°C to TMAX = 85°C, maximum sampling rate, 50% clock duty cycle, AVDD = DVDD = 1.8 V, and –1-dBFS differential input, unless otherwise noted.
PARAMETER ADC34J42 ADC34J43 UNIT
MIN TYP MAX MIN TYP MAX
ADC clock frequency 50 80 MSPS
Resolution 14 14 Bits
1.8-V analog supply current 233 269 mA
1.8-V digital supply current 39 56 mA
Total power dissipation 491 584 mW
Global power-down dissipation 22 22 mW
Wake-up time from global power-down 85 85 µs
Standby power-down dissipation 155 166 mW
Wake-up time from standby power-down 35 35 µs

7.8 Electrical Characteristics: General

Typical values are at TA = 25°C, full temperature range is TMIN = –40°C to TMAX = 85°C, maximum sampling rate, 50% clock duty cycle, AVDD = DVDD = 1.8 V, and –1-dBFS differential input, unless otherwise noted.
PARAMETER TEST CONDITIONS MIN TYP MAX UNIT
ANALOG INPUT
Differential input full-scale 2.0 VPP
ri Input resistance Differential at dc 6.5
ci Input capacitance Differential at dc 5.2 pF
VOC(VCM) VCM common-mode voltage output 0.95 V
VCM output current capability 10 mA
Input common-mode current Per analog input pin 1.5 µA/MSPS
Analog input bandwidth (3 dB) 50-Ω differential source driving 50-Ω termination across INP and INM 450 MHz
DC ACCURACY
EO Offset error –20 20 mV
EG(REF) Gain error as a result of internal reference inaccuracy alone –3 3 %FS
EG(CHAN) Gain error of channel alone ±1 %FS
α(EGCHAN) Temperature coefficient of EG(CHAN) –0.017 Δ%FS/C
CHANNEL-TO-CHANNEL ISOLATION
Crosstalk(1) fIN = 10 MHz Near channel 105 dB
Far channel 105 dB
fIN = 100 MHz Near channel 95 dB
Far channel 105 dB
fIN = 200 MHz Near channel 94 dB
Far channel 105 dB
fIN = 230 MHz Near channel 93 dB
Far channel 105 dB
fIN = 300 MHz Near channel 85 dB
Far channel 105 dB
(1) Crosstalk is measured with a –1-dBFS input signal on the aggressor channel and no input on the victim channel.

7.9 AC Performance: ADC34J45

Typical values are at TA = 25°C, full temperature range is TMIN = –40°C to TMAX = 85°C, ADC sampling rate = 160 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, and –1-dBFS differential input, unless otherwise noted.
PARAMETER TEST CONDITIONS ADC34J45 (fS = 160 MSPS) UNIT
DITHER ON DITHER OFF
MIN TYP MAX MIN TYP MAX
DYNAMIC AC CHARACTERISTICS
SNR Signal-to-noise ratio fIN = 10 MHz 72.4 72.7 dBFS
fIN = 70 MHz 70.4 71.6 72
fIN = 100 MHz 70.9 71.3
fIN = 170 MHz 69.9 70.4
fIN = 230 MHz 68.8 69.5
NSD Noise spectral density
(averaged across Nyquist zone)
fIN = 10 MHz –151.4 –151.7 dBFS/Hz
fIN = 70 MHz –149.5 –150.6 –151
fIN = 100 MHz –149.9 –150.3
fIN = 170 MHz –148.9 –149.4
fIN = 230 MHz –147.8 –148.5
SINAD Signal-to-noise and distortion ratio fIN = 10 MHz 72.1 72.4 dBFS
fIN = 70 MHz 69.6 71.2 71.6
fIN = 100 MHz 70.7 71.1
fIN = 170 MHz 69.5 70
fIN = 230 MHz 68.4 69
ENOB Effective number of bits fIN = 10 MHz 11.8 11.8 Bits
fIN = 70 MHz 11.3 11.7 11.7
fIN = 100 MHz 11.6 11.6
fIN = 170 MHz 11.3 11.3
fIN = 230 MHz 11.1 11.1
SFDR Spurious-free dynamic range fIN = 10 MHz 88 86 dBc
fIN = 70 MHz 81 86 85
fIN = 100 MHz 86 86
fIN = 170 MHz 83 83
fIN = 230 MHz 80 80
HD2 Second harmonic distortion fIN = 10 MHz –91 –93 dBc
fIN = 70 MHz 81 –94 –92
fIN = 100 MHz –93 –91
fIN = 170 MHz –83 –83
fIN = 230 MHz –80 –80
HD3 Third harmonic distortion fIN = 10 MHz –88 –86 dBc
fIN = 70 MHz 81 –86 –85
fIN = 100 MHz –86 –86
fIN = 170 MHz –92 –87
fIN = 230 MHz –85 –82
Non
HD2, HD3
Spurious-free dynamic range (excluding HD2, HD3) fIN = 10 MHz 98 95 dBc
fIN = 70 MHz 87 98 94
fIN = 100 MHz 96 93
fIN = 170 MHz 92 91
fIN = 230 MHz 92 90
THD Total harmonic distortion fIN = 10 MHz –84 –84 dBc
fIN = 70 MHz 76.5 –86 –83
fIN = 100 MHz –84 –84
fIN = 170 MHz –82 –80
fIN = 230 MHz –78 –77
IMD3 Third-order intermodulation distortion fIN1 = 45 MHz,
fIN2 = 50 MHz
93 93 dBFS
fIN1 = 185 MHz,
fIN2 = 190 MHz
88 88

7.10 AC Performance: ADC34J44

Typical values are at TA = 25°C, full temperature range is TMIN = –40°C to TMAX = 85°C, ADC sampling rate = 125 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, and –1-dBFS differential input, unless otherwise noted.
PARAMETER TEST CONDITIONS ADC34J44 (fS = 125 MSPS) UNIT
DITHER ON DITHER OFF
MIN TYP MAX MIN TYP MAX
DYNAMIC AC CHARACTERISTICS
SNR Signal-to-noise ratio fIN = 10 MHz 72.5 72.9 dBFS
fIN = 70 MHz 70.8 72.1 72.5
fIN = 100 MHz 71.8 72.3
fIN = 170 MHz 70.6 71.4
fIN = 230 MHz 69.8 70.6
NSD Noise spectral density
(averaged across Nyquist zone)
fIN = 10 MHz –151.5 –151.9 dBFS/Hz
fIN = 70 MHz –148.8 –151.1 –151.5
fIN = 100 MHz –150.8 –151.3
fIN = 170 MHz –149.6 –150.4
fIN = 230 MHz –148.8 –149.6
SINAD Signal-to-noise and distortion ratio fIN = 10 MHz 72.4 72.8 dBFS
fIN = 70 MHz 68.6 72.1 72.4
fIN = 100 MHz 71.7 72.1
fIN = 170 MHz 70.4 70.9
fIN = 230 MHz 69.4 70.1
ENOB Effective number of bits fIN = 10 MHz 11.9 11.9 Bits
fIN = 70 MHz 11.1 11.7 11.8
fIN = 100 MHz 11.7 11.7
fIN = 170 MHz 11.4 11.5
fIN = 230 MHz 11.1 11.2
SFDR Spurious-free dynamic range fIN = 10 MHz 93 93 dBc
fIN = 70 MHz 81 94 91
fIN = 100 MHz 92 92
fIN = 170 MHz 83 83
fIN = 230 MHz 81 80
HD2 Second harmonic distortion fIN = 10 MHz –93 –93 dBc
fIN = 70 MHz 81 –94 –94
fIN = 100 MHz –92 –92
fIN = 170 MHz –83 –83
fIN = 230 MHz –81 –80
HD3 Third harmonic distortion fIN = 10 MHz –95 –94 dBc
fIN = 70 MHz 83 –94 –91
fIN = 100 MHz –95 –93
fIN = 170 MHz –88 –85
fIN = 230 MHz –90 –90
Non
HD2, HD3
Spurious-free dynamic range (excluding HD2, HD3) fIN = 10 MHz 99 96 dBc
fIN = 70 MHz 87 98 95
fIN = 100 MHz 98 95
fIN = 170 MHz 97 92
fIN = 230 MHz 96 93
THD Total harmonic distortion fIN = 10 MHz –89 –87 dBc
fIN = 70 MHz 76.5 –89 –87
fIN = 100 MHz –88 –86
fIN = 170 MHz –82 –80
fIN = 230 MHz –80 –79
IMD3 Third-order intermodulation distortion fIN1 = 45 MHz,
fIN2 = 50 MHz
92 92 dBFS
fIN1 = 185 MHz,
fIN2 = 190 MHz
90 90

7.11 AC Performance: ADC34J43

Typical values are at TA = 25°C, full temperature range is TMIN = –40°C to TMAX = 85°C, ADC sampling rate = 80 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, and –1-dBFS differential input, unless otherwise noted.
PARAMETER TEST CONDITIONS ADC34J43 (fS = 80 MSPS) UNIT
DITHER ON DITHER OFF
MIN TYP MAX MIN TYP MAX
DYNAMIC AC CHARACTERISTICS
SNR Signal-to-noise ratio fIN = 10 MHz 72.3 72.8 dBFS
fIN = 70 MHz 70.7 72 72.4
fIN = 100 MHz 71.7 72.1
fIN = 170 MHz 70.9 71.3
fIN = 230 MHz 70.1 70.5
NSD Noise spectral density
(averaged across Nyquist zone)
fIN = 10 MHz –151.3 –151.8 dBFS/Hz
fIN = 70 MHz –146.8 –151 –151.4
fIN = 100 MHz –150.7 –151.1
fIN = 170 MHz –149.9 –150.3
fIN = 230 MHz –149.1 –149.5
SINAD Signal-to-noise and distortion ratio fIN = 10 MHz 72.3 72.6 dBFS
fIN = 70 MHz 68.6 71.9 72.2
fIN = 100 MHz 71.6 71.9
fIN = 170 MHz 70.6 70.9
fIN = 230 MHz 69.6 69.9
ENOB Effective number of bits fIN = 10 MHz 11.8 11.8 Bits
fIN = 70 MHz 11.1 11.8 11.9
fIN = 100 MHz 11.7 11.7
fIN = 170 MHz 11.4 11.4
fIN = 230 MHz 11.2 11.2
SFDR Spurious-free dynamic range fIN= 10 MHz 94 94 dBc
fIN = 70 MHz 82 94 94
fIN = 100 MHz 89 91
fIN = 170 MHz 83 83
fIN = 230 MHz 80 81
HD2 Second harmonic distortion fIN = 10 MHz –94 –94 dBc
fIN = 70 MHz 82 –94 –94
fIN = 100 MHz –91 –91
fIN = 170 MHz –83 –83
fIN = 230 MHz –80 –81
HD3 Third harmonic distortion fIN = 10 MHz –99 –94 dBc
fIN = 70 MHz 83 –99 –95
fIN = 100 MHz –99 –89
fIN = 170 MHz –99 –90
fIN = 230 MHz –99 –83
Non
HD2, HD3
Spurious-free dynamic range (excluding HD2, HD3) fIN = 10 MHz 98 92 dBc
fIN = 70 MHz 87 98 92
fIN = 100 MHz 97 92
fIN = 170 MHz 95 91
fIN = 230 MHz 94 91
THD Total harmonic distortion fIN = 10 MHz –91 –86 dBc
fIN = 70 MHz 76.5 –91 –86
fIN = 100 MHz –87 –84
fIN = 170 MHz –82 –81
fIN = 230 MHz –78 –78
IMD3 Third-order intermodulation distortion fIN1 = 45 MHz,
fIN2 = 50 MHz
94 94 dBFS
fIN1 = 185 MHz,
fIN2 = 190 MHz
89 89

7.12 AC Performance: ADC34J42

Typical values are at TA = 25°C, full temperature range is TMIN = –40°C to TMAX = 85°C, ADC sampling rate = 50 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, and –1-dBFS differential input, unless otherwise noted.
PARAMETER TEST CONDITIONS ADC34J42 (fS = 50 MSPS) UNIT
DITHER ON DITHER OFF
MIN TYP MAX MIN TYP MAX
DYNAMIC AC CHARACTERISTICS
SNR Signal-to-noise ratio fIN = 10 MHz 70.7 72.4 72.8 dBFS
fIN = 70 MHz 72 72.4
fIN = 100 MHz 71.9 72.2
fIN = 170 MHz 71 71.3
fIN = 230 MHz 69.9 70.1
NSD Noise spectral density
(averaged across Nyquist zone)
fIN = 10 MHz –145.9 –151.4 –151.8 dBFS/Hz
fIN = 70 MHz –151 –151.4
fIN = 100 MHz –150.9 –151.2
fIN = 170 MHz –150 –150.3
fIN = 230 MHz –148.9 –149.1
SINAD Signal-to-noise and distortion ratio fIN = 10 MHz 68.6 72.2 72.6 dBFS
fIN = 70 MHz 71.9 72.2
fIN = 100 MHz 71.7 71.9
fIN = 170 MHz 70.7 70.9
fIN = 230 MHz 69.4 69.5
ENOB Effective number of bits fIN = 10 MHz 11.1 11.8 11.9 Bits
fIN = 70 MHz 11.7 11.7
fIN = 100 MHz 11.7 11.8
fIN = 170 MHz 11.4 11.4
fIN = 230 MHz 11.1 11.1
SFDR Spurious-free dynamic range fIN = 10 MHz 82 93 92 dBc
fIN = 70 MHz 93 92
fIN = 100 MHz 90 89
fIN = 170 MHz 83 83
fIN = 230 MHz 80 80
HD2 Second harmonic distortion fIN = 10 MHz 82 –93 –92 dBc
fIN = 70 MHz –93 –96
fIN = 100 MHz –90 –90
fIN = 170 MHz –83 –83
fIN = 230 MHz –80 –80
HD3 Third harmonic distortion fIN = 10 MHz 83 –94 –93 dBc
fIN = 70 MHz –94 –92
fIN = 100 MHz –91 –89
fIN = 170 MHz –91 –90
fIN = 230 MHz –84 –83
Non
HD2, HD3
Spurious-free dynamic range (excluding HD2, HD3) fIN = 10 MHz 87 98 92 dBc
fIN = 70 MHz 98 92
fIN = 100 MHz 96 92
fIN = 170 MHz 96 91
fIN = 230 MHz 96 91
THD Total harmonic distortion fIN = 10 MHz 76.5 –91 –85 dBc
fIN = 70 MHz –89 –85
fIN = 100 MHz –86 –84
fIN = 170 MHz –82 –81
fIN = 230 MHz –78 –78
IMD3 Third-order intermodulation distortion fIN1 = 45 MHz,
fIN2 = 50 MHz
93 93 dBFS
fIN1 = 185 MHz,
fIN2 = 190 MHz
86 86

7.13 Digital Characteristics

The dc specifications refer to the condition where the digital outputs are not switching, but are permanently at a valid logic level 0 or 1. AVDD = DVDD = 1.8 V and –1-dBFS differential input, unless otherwise noted.
PARAMETER TEST CONDITIONS MIN TYP MAX UNITS
DIGITAL INPUTS (RESET, SCLK, SEN, SDATA, PDN)(1)
VIH High-level input voltage All digital inputs support 1.8-V and 3.3-V logic levels 1.2 V
VIL Low-level input voltage All digital inputs support 1.8-V and 3.3-V logic levels 0.4 V
IIH High-level input current SEN 0 µA
RESET, SCLK, SDATA, PDN 10 µA
IIL Low-level input current SEN 10 µA
RESET, SCLK, SDATA, PDN 0 µA
DIGITAL INPUTS (SYNCP~, SYNCM~, SYSREFP, SYSREFM)
VIH High-level input voltage 1.3 V
VIL Low-level input voltage 0.5 V
V(CM_DIG) Common-mode voltage for SYNC~ and SYSREF 0.9 V
DIGITAL OUTPUTS (SDOUT, OVRA, OVRB, OVRC, OVRD)
VOH High-level output voltage DVDD – 0.1 DVDD V
VOL Low-level output voltage 0.1 V
DIGITAL OUTPUTS (JESD204B Interface: DxP, DxM)(2)
VOH High-level output voltage DVDD V
VOL Low-level output voltage DVDD – 0.4 V
VOD Output differential voltage 0.4 V
VOC Output common-mode voltage DVDD – 0.2 V
Transmitter short-circuit current Transmitter pins shorted to any voltage between –0.25 V and 1.45 V –100 100 mA
zos Single-ended output impedance 50 Ω
Output capacitance Output capacitance inside the device,
from either output to ground
2 pF
(1) RESET, SCLK, SDATA, and PDN pins have 150-kΩ (typical) internal pull-down resistor to ground, while SEN pin has 150-kΩ (typical) pull-up resistor to AVDD.
(2) 50-Ω, single-ended external termination to 1.8 V.

7.14 Timing Characteristics

Typical values are at 25°C, AVDD = DVDD = 1.8 V, and –1-dBFS differential input, unless otherwise noted. Minimum and maximum values are across the full temperature range: TMIN = –40°C to TMAX = 85°C. See Figure 143.
PARAMETER TEST CONDITIONS MIN TYP MAX UNITS
SAMPLE TIMING CHARACTERISTICS
Aperture delay 0.85 1.25 1.65 ns
Aperture delay matching Between four channels on the same device ±70 ps
Between two devices at the same temperature and supply voltage ±150 ps
Aperture jitter 200 fS rms
Wake-up time Time to valid data after coming out of STANDBY mode 35 100 µs
Time to valid data after coming out of global power-down 85 300 µs
tSU_SYNC~ Setup time for SYNC~ Referenced to input clock rising edge 1 ns
tH_SYNC~ Hold time for SYNC~ Referenced to input clock rising edge 100 ps
tSU_SYSREF Setup time for SYSREF Referenced to input clock rising edge 1 ns
tH_SYSREF Hold time for SYSREF Referenced to input clock rising edge 100 ps
CML OUTPUT TIMING CHARACTERISTICS
Unit interval 312.5 1667 ps
Serial output data rate 3.2 Gbps
Total jitter 3.125 Gbps (20x mode, fS = 156.25 MSPS) 0.3 P-PUI
tR, tF Data rise time,
data fall time
Rise and fall times measured from 20% to 80%,
differential output waveform,
600 Mbps ≤ bit rate ≤ 3.125 Gbps
105 ps

Table 2. Latency in Different Modes(1)(2)

MODE PARAMETER LATENCY (N Cycles) TYPICAL DATA DELAY (tD, ns)
20x ADC latency 17 0.29 × tS + 3
Normal OVR latency 9 0.5 × tS + 2
Fast OVR latency 7 0.5 × tS + 2
From SYNC~ falling edge to CGS phase(3) 15 0.3 × tS + 4
From SYNC~ rising edge to ILA sequence(4) 17 0.3 × tS + 4
40x ADC latency 16 0.85 × tS + 3.9
Normal OVR latency 9 0.5 × tS + 2
Fast OVR latency 7 0.5 × tS + 2
From SYNC~ falling edge to CGS phase(3) 14 0.9 × tS + 4
From SYNC~ rising edge to ILA sequence(4) 12 0.9 × tS + 4
(1) Overall latency = latency + tD.
(2) tS is the time period of the ADC conversion clock.
(3) Latency is specified for subclass 2. In subclass 0, the SYNC~ falling edge to CGS phase latency is 16 clock cycles in 10x mode and 15 clock cycles in 20x mode.
(4) Latency is specified for subclass 2. In subclass 0, the SYNC~ rising edge to ILA sequence latency is 11 clock cycles in 10x mode and 11 clock cycles in 20x mode.

7.15 Typical Characteristics: ADC34J45

Typical values are at TA= 25°C, ADC sampling rate = 160 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, –1-dBFS differential input, 2-VPP full-scale, and 32k-point FFT, Dither enable, special modes written, unless otherwise noted.
C001_BAS664.png
fS = 160 MSPS, SNR = 72.5 dBFS, fIN = 10 MHz, SFDR = 88 dBc
Figure 1. FFT for 10-MHz Input signal, Dither On
C003_BAS664.png
fS = 160 MSPS, SNR = 71.4 dBFS, fIN = 70 MHz, SFDR = 86 dBc
Figure 3. FFT for 70-MHz Input Signal, Dither On
C005_BAS664.png
fS = 160 MSPS, SNR = 69.7 dBFS, fIN = 170 MHz,
SFDR = 83 dBc
Figure 5. FFT for 170-MHz Input Signal, Dither On
C007_BAS664.png
fS = 160 MSPS, SNR = 68.2 dBFS, fIN = 270 MHz,
SFDR = 76 dBc
Figure 7. FFT for 270-MHz Input Signal, Dither On
C009_BAS664.png
fS = 160 MSPS, SNR = 63.3 dBFS, fIN = 450 MHz,
SFDR = 64 dBc
Figure 9. FFT for 450-MHz Input Signal, Dither On
C011_BAS664.png
fS = 160 MSPS, IMD = 92 dBFS, fIN1 = 46 MHz, fIN2 = 50 MHz, SFDR = 99 dBFS
Figure 11. FFT for Two-Tone Input Signal
(–7 dBFS at 46 MHz and 50 MHz)
C013_BAS664.png
fS = 160 MSPS, IMD = 87 dBFS, fIN1 = 185 MHz, fIN2 = 190 MHz, SFDR = 90 dBFS
Figure 13. FFT for Two-Tone Input Signal
(–7 dBFS at 185 MHz and 190 MHz)
C015_BAS664.png
fS = 160 MSPS, fIN1 = 46 MHz, fIN2 = 50 MHz
Figure 15. IMD vs Input Amplitude (46 MHz and 50 MHz)
C017_BAS664.png
Figure 17. SNR vs Input Frequency
C019_BAS664.png
Figure 19. SNR vs Digital Gain and Input Frequency
C021_BAS664.png
Figure 21. Performance Across Input Amplitude (30 MHz)
C023_BAS664.png
Figure 23. Performance vs Input Common-Mode Voltage
(30 MHz)
C025_BAS664.png
Figure 25. SFDR vs AVDD Supply and Temperature
C027_BAS664.png
Figure 27. SFDR vs DVDD Supply and Temperature
C029_BAS664.png
Figure 29. Performance vs Clock Amplitude (40 MHz)
C031_BAS664.png
Figure 31. Performance vs Clock Duty Cycle (40 MHz)
C033_BAS664.png
RMS noise = 1.3 LSBs
Figure 33. Idle Channel Histogram
C002_BAS664.png
fS = 160 MSPS, SNR = 72.7 dBFS, fIN = 10 MHz, SFDR = 85 dBc
Figure 2. FFT for 10-MHz Input signal, Dither Off
C004_BAS664.png
fS = 160 MSPS, SNR = 71.8 dBFS, fIN = 70 MHz, SFDR = 85 dBc
Figure 4. FFT for 70-MHz Input Signal, Dither Off
C006_BAS664.png
fS = 160 MSPS, SNR = 70.4 dBFS, fIN = 70 MHz, SFDR = 81 dBc
Figure 6. FFT for 170-MHz Input Signal, Dither Off
C008_BAS664.png
fS = 160 MSPS, SNR = 68.8 dBFS, fIN = 270 MHz,
SFDR = 75 dBc
Figure 8. FFT for 270-MHz Input Signal, Dither Off
C010_BAS664.png
fS = 160 MSPS, SNR = 63.4 dBFS, fIN = 450 MHz,
SFDR = 63 dBc
Figure 10. FFT for 450-MHz Input Signal, Dither Off
C012_BAS664.png
fS = 160 MSPS, IMD = 99 dBFS, fIN1 = 46 MHz, fIN2 = 50 MHz, SFDR = 102 dBFS
Figure 12. FFT for Two-Tone Input Signal
(–36 dBFS at 46 MHz and 50 MHz)
C014_BAS664.png
fS = 160 MSPS, IMD = 100 dBFS, fIN1 = 185 MHz, fIN2 = 190 MHz, SFDR = 102 dBFS
Figure 14. FFT for Two-Tone Input Signal
(–36 dBFS at 185 MHz and 190 MHz)
C016_BAS664.png
fS = 160 MSPS, fIN1 = 185 MHz, fIN2 = 190 MHz
Figure 16. IMD vs Input Amplitude (185 MHz and 190 MHz)
C018_BAS664.png
Figure 18. SFDR vs Input Frequency
C020_BAS664.png
Figure 20. SFDR vs Digital Gain and Input Frequency
C022_BAS664.png
Figure 22. Performance Across Input Amplitude (170 MHz)
C024_BAS664.png
Figure 24. Performance vs Input Common-Mode Voltage (170 MHz)
C026_BAS664.png
Figure 26. SNR vs AVDD Supply and Temperature
C028_BAS664.png
Figure 28. SNR vs DVDD Supply and Temperature
C030_BAS664.png
Figure 30. Performance vs Clock Amplitude (150 MHz)
C032_BAS664.png
Figure 32. Performance vs Clock Duty Cycle (150 MHz)

7.16 Typical Characteristics: ADC34J44

Typical values are at TA= 25°C, ADC sampling rate = 125 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, –1-dBFS differential input, 2-VPP full-scale, and 32k-point FFT, unless otherwise noted.
C101_BAS664.png
fS = 125 MSPS, SNR = 72.6 dBFS, fIN = 10 MHz, SFDR = 94 dBc
Figure 34. FFT for 10-MHz Input Signal, Dither On
C103_BAS664.png
fS = 125 MSPS, SNR = 72.2 dBFS, fIN = 70 MHz, SFDR = 95 dBc
Figure 36. FFT for 70-MHz Input Signal, Dither On
C105_BAS664.png
fS = 125 MSPS, SNR = 70.5 dBFS, fIN = 170 MHz,
SFDR = 87 dBc
Figure 38. FFT for 170-MHz Input Signal, Dither On
C107_BAS664.png
fS = 125 MSPS, SNR = 69.6 dBFS, fIN = 270 MHz,
SFDR = 80 dBc
Figure 40. FFT for 270-MHz Input Signal, Dither On
C109_BAS664.png
fS = 125 MSPS, SNR = 65.8 dBFS, fIN = 450 MHz,
SFDR = 68 dBc
Figure 42. FFT for 450-MHz Input Signal, Dither On
C111_BAS664.png
fS = 125 MSPS, IMD = 93 dBFS, fIN1 = 46 MHz, fIN2 = 50 MHz, SFDR = 97 dBFS
Figure 44. FFT for Two-Tone Input Signal
(–7dBFS at 46 MHz and 50 MHz)
C113_BAS664.png
fS = 125 MSPS, IMD = 88 dBFS, fIN1 = 185 MHz, fIN2 = 190 MHz, SFDR = 190 dBFS
Figure 46. FFT for Two-Tone Input Signal
(–7 dBFS at 185 MHz and 190 MHz)
C115_BAS664.png
Figure 48. IMD vs Input Amplitude (46 MHz and 50 MHz)
C117_BAS664.png
Figure 50. SNR vs Input Frequency
C119_BAS664.png
Figure 52. SNR vs Digital Gain and Input Frequency
C121_BAS664.png
Figure 54. Performance Across Input Amplitude (30 MHz)
C123_BAS664.png
Figure 56. Performance vs Input Common-Mode Voltage
(30 MHz)
C125_BAS664.png
Figure 58. SFDR vs AVDD Supply and Temperature
C127_BAS664.png
Figure 60. SFDR vs DVDD Supply and Temperature
C129_BAS664.png
Figure 62. Performance vs Clock Amplitude (40 MHz)
C131_BAS664.png
Figure 64. Performance vs Clock Duty Cycle (40 MHz)
C133_BAS664.png
RMS noise = 1.4 LSBs
Figure 66. Idle Channel Histogram
C102_BAS664.png
fS = 125 MSPS, SNR = 73.1 dBFS, fIN = 10 MHz, SFDR = 88 dBc
Figure 35. FFT for 10-MHz Input Signal, Dither Off
C104_BAS664.png
fS = 125 MSPS, SNR = 72.7 dBFS, fIN = 70 MHz, SFDR = 89 dBc
Figure 37. FFT for 70-MHz Input Signal, Dither Off
C106_BAS664.png
fS = 125 MSPS, SNR = 71.4 dBFS, fIN = 70 MHz,
SFDR = 86 dBc
Figure 39. FFT for 170-MHz Input Signal, Dither Off
C108_BAS664.png
fS = 125 MSPS, SNR = 70.3 dBFS, fIN = 270 MHz,
SFDR = 79 dBc
Figure 41. FFT for 270-MHz Input Signal, Dither Off
C110_BAS664.png
fS = 125 MSPS, SNR = 66.5 dBFS, fIN = 450 MHz,
SFDR = 67 dBc
Figure 43. FFT for 450-MHz Input Signal, Dither Off
C112_BAS664.png
fS = 125 MSPS, IMD = 101 dBFS, fIN1 = 46 MHz, fIN2 = 50 MHz, SFDR = 106 dBFS
Figure 45. FFT for Two-Tone Input Signal
(–36 dBFS at 46 MHz and 50 MHz)
C114_BAS664.png
fS = 125 MSPS, IMD = 99 dBFS, fIN1 = 46 MHz, fIN2 = 50 MHz, SFDR = 104 dBFS
Figure 47. FFT for Two-Tone Input Signal
(–36 dBFS at 185 MHz and 190 MHz)
C116_BAS664.png
Figure 49. IMD vs Input Amplitude (185 MHz and 190 MHz)
C118_BAS664.png
Figure 51. SFDR vs Input Frequency
C120_BAS664.png
Figure 53. SFDR vs Digital Gain and Input Frequency
C122_BAS664.png
Figure 55. Performance Across Input Amplitude (170 MHz)
C124_BAS664.png
Figure 57. Performance vs Input Common-Mode Voltage (170 MHz)
C126_BAS664.png
Figure 59. SNR vs AVDD Supply and Temperature
C128_BAS664.png
Figure 61. SNR vs DVDD Supply and Temperature
C130_BAS664.png
Figure 63. Performance vs Clock Amplitude (150 MHz)
C132_BAS664.png
Figure 65. Performance vs Clock Duty Cycle (150 MHz)

7.17 Typical Characteristics: ADC34J43

Typical values are at TA= 25°C, ADC sampling rate = 80 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, –1-dBFS differential input, 2-VPP full-scale, and 32k-point FFT, unless otherwise noted.
C201_BAS664.png
fS = 80 MSPS, SNR = 72.4 dBFS, fIN = 10 MHz, SFDR = 96 dBc
Figure 67. FFT for 10-MHz Input Signal, Dither On
C203_BAS664.png
fS = 80 MSPS, SNR = 72 dBFS, fIN = 70 MHz, SFDR = 95 dBc
Figure 69. FFT for 70-MHz Input Signal, Dither On
C205_BAS664.png
fS = 80 MSPS, SNR = 70.7 dBFS, fIN = 170 MHz, SFDR = 93 dBc
Figure 71. FFT for 170-MHz Input Signal, Dither On
C207_BAS664.png
fS = 80 MSPS, SNR = 69.5 dBFS, fIN = 270 MHz, SFDR = 76 dBc
Figure 73. FFT for 270-MHz Input Signal, Dither On
C209_BAS664.png
fS = 80 MSPS, SNR = 63.2 dBFS, fIN = 450 MHz, SFDR = 67 dBc
Figure 75. FFT for 450-MHz Input Signal, Dither On
C211_BAS664.png
fS = 80 MSPS, IMD = 93 dBFS, fIN1 = 46 MHz, fIN2 = 50 MHz, SFDR = 98 dBFS
Figure 77. FFT for Two-Tone Input Signal
(–7 dBFS at 46 MHz and 50 MHz)
C213_BAS664.png
fS = 80 MSPS, IMD = 88 dBFS, fIN1 = 185 MHz, fIN2 = 190 MHz, SFDR = 94 dBFS
Figure 79. FFT for Two-Tone Input Signal
(–7 dBFS at 185 MHz and 190 MHz)
C215_BAS664.png
Figure 81. IMD vs Input Amplitude (46 MHz and 50 MHz)
C217_BAS664.png
Figure 83. SNR vs Input Frequency
C219_BAS664.png
Figure 85. SNR vs Digital Gain and Input Frequency
C221_BAS664.png
Figure 87. Performance Across Input Amplitude (30 MHz)
C223_BAS664.png
Figure 89. Performance vs Input Common-Mode Voltage
(30 MHz)
C225_BAS663.png
Figure 91. SFDR vs AVDD Supply and Temperature
C227_BAS663.png
Figure 93. SFDR vs DVDD Supply and Temperature
C229_BAS664.png
Figure 95. Performance vs Clock Amplitude (40 MHz)
C231_BAS664.png
Figure 97. Performance vs Clock Duty Cycle (40 MHz)
C233_BAS664.png
RMS noise = 1.4 LSBs
Figure 99. Idle Channel Histogram
C202_BAS664.png
fS = 80 MSPS, SNR = 73 dBFS, fIN = 10 MHz, SFDR = 90 dBc
Figure 68. FFT for 10-MHz Input Signal, Dither Off
C204_BAS664.png
fS = 80 MSPS, SNR = 72.5 dBFS, fIN = 70 MHz, SFDR = 89 dBc
Figure 70. FFT for 70-MHz Input Signal, Dither Off
C206_BAS664.png
fS = 80 MSPS, SNR = 71.4 dBFS, fIN = 10 MHz, SFDR = 90 dBc
Figure 72. FFT for 170-MHz Input Signal, Dither Off
C208_BAS664.png
fS = 80 MSPS, SNR = 69.8 dBFS, fIN = 270 MHz, SFDR = 75 dBc
Figure 74. FFT for 270-MHz Input Signal, Dither Off
C210_BAS664.png
fS = 80 MSPS, SNR = 64.1 dBFS, fIN = 450 MHz, SFDR = 67 dBc
Figure 76. FFT for 450-MHz Input Signal, Dither Off
C212_BAS664.png
fS = 80 MSPS, IMD = 101 dBFS, fIN1 = 46 MHz, fIN2 = 50 MHz, SFDR = 106 dBFS
Figure 78. FFT for Two-Tone Input Signal
(–36 dBFS at 46 MHz and 50 MHz)
C214_BAS664.png
fS = 80 MSPS, IMD = 99 dBFS, fIN1 = 185 MHz, fIN2 = 190 MHz, SFDR = 102 dBFS
Figure 80. FFT for Two-Tone Input Signal
(–36 dBFS at 185 MHz and 190 MHz)
C216_BAS664.png
Figure 82. IMD vs Input Amplitude (185 MHz and 190 MHz)
C218_BAS664.png
Figure 84. SFDR vs Input Frequency
C220_BAS664.png
Figure 86. SFDR vs Digital Gain and Input Frequency
C222_BAS664.png
Figure 88. Performance Across Input Amplitude (170 MHz)
C224_BAS664.png
Figure 90. Performance vs Input Common-Mode Voltage (170 MHz)
C226_BAS663.png
Figure 92. SNR vs AVDD Supply and Temperature
C228_BAS664.png
Figure 94. SNR vs DVDD Supply and Temperature
C230_BAS664.png
Figure 96. Performance vs Clock Amplitude (150 MHz)
C232_BAS664.png
Figure 98. Performance vs Clock Duty Cycle (150 MHz)

7.18 Typical Characteristics: ADC34J42

Typical values are at TA= 25°C, ADC sampling rate = 50 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, –1-dBFS differential input, 2-VPP full-scale, and 32k-point FFT, unless otherwise noted.
C301_BAS664.png
fS = 50 MSPS, SNR = 72.3 dBFS, fIN = 10 MHz, SFDR = 95 dBc
Figure 100. FFT for 10-MHz Input Signal, Dither On
C303_BAS664.png
fS = 50 MSPS, SNR = 71.8 dBFS, fIN = 70 MHz, SFDR = 93 dBc
Figure 102. FFT for 70-MHz Input Signal, Dither On
C305_BAS664.png
fS = 50 MSPS, SNR = 70.8 dBFS, fIN = 170 MHz, SFDR = 87 dBc
Figure 104. FFT for 170-MHz Input Signal, Dither On
C307_BAS664.png
fS = 50 MSPS, SNR = 69.5 dBFS, fIN = 270 MHz, SFDR = 76 dBc
Figure 106. FFT for 270-MHz Input Signal, Dither On
C309_BAS664.png
fS = 50 MSPS, SNR = 66.3 dBFS, fIN = 450 MHz, SFDR = 63 dBc
Figure 108. FFT for 450-MHz Input Signal, Dither On
C311_BAS664.png
fS = 50 MSPS, IMD = 93 dBFS, fIN1 = 46 MHz, fIN2 = 50 MHz, SFDR = 96 dBFS
Figure 110. FFT for Two-Tone Input Signal
(–7dBFS at 46 MHz and 50 MHz)
C313_BAS664.png
fS = 50 MSPS, IMD = 86 dBFS, fIN1 = 185 MHz, fIN2 = 190 MHz, SFDR = 92 dBFS
Figure 112. FFT for Two-Tone Input Signal
(–7 dBFS at 185 MHz and 190 MHz)
C315_BAS664.png
Figure 114. IMD vs Input Amplitude (46 MHz and 50 MHz)
C317_BAS664.png
Figure 116. SNR vs Input Frequency
C319_BAS664.png
Figure 118. SNR vs Digital Gain and Input Frequency
C321_BAS664.png
Figure 120. Performance Across Input Amplitude (30 MHz)
C323_BAS664.png
Figure 122. Performance vs Input Common-Mode Voltage (30 MHz)
C325_BAS664.png
Figure 124. SFDR vs AVDD Supply and Temperature
C327_BAS664.png
Figure 126. SFDR vs DVDD Supply and Temperature
C329_BAS664.png
Figure 128. Performance vs Clock Amplitude (40 MHz)
C331_BAS664.png
Figure 130. Performance vs Clock Duty Cycle (40 MHz)
C333_BAS664.png
RMS noise = 1.3 LSBs
Figure 132. Idle Channel Histogram
C302_BAS664.png
fS = 50 MSPS, SNR = 72.9 dBFS, fIN = 10 MHz, SFDR = 89 dBc
Figure 101. FFT for 10-MHz Input Signal, Dither Off
C304_BAS664.png
fS = 50 MSPS, SNR = 72.3 dBFS, fIN = 70 MHz, SFDR = 87 dBc
Figure 103. FFT for 70-MHz Input Signal, Dither Off
C306_BAS664.png
fS = 50 MSPS, SNR = 71.2 dBFS, fIN = 170 MHz, SFDR = 86 dBc
Figure 105. FFT for 170-MHz Input Signal, Dither Off
C308_BAS664.png
fS = 50 MSPS, SNR = 69.6 dBFS, fIN = 270 MHz, SFDR = 76 dBc
Figure 107. FFT for 270-MHz Input Signal, Dither Off
C310_BAS664.png
fS = 50 MSPS, SNR = 66.9 dBFS, fIN = 450 MHz, SFDR = 63 dBc
Figure 109. FFT for 450-MHz Input Signal, Dither Off
C312_BAS664.png
fS = 50 MSPS, IMD = 101 dBFS, fIN1 = 46 MHz, fIN2 = 50 MHz, SFDR = 106 dBFs
Figure 111. FFT for Two-Tone Input Signal
(–36 dBFS at 46 MHz and 50 MHz)
C314_BAS664.png
fS = 50 MSPS, IMD = 99 dBFS, fIN1 = 185 MHz, fIN2 = 190 MHz, SFDR = 102 dBFs
Figure 113. FFT for Two-Tone Input Signal
(–36 dBFS at 185 MHz and 190 MHz)
C316_BAS664.png
Figure 115. IMD vs Input Amplitude (185 MHz and 190 MHz)
C318_BAS664.png
Figure 117. SFDR vs Input Frequency
C320_BAS664.png
Figure 119. SFDR vs Digital Gain and Input Frequency
C322_BAS664.png
Figure 121. Performance Across Input amplitude (170 MHz)
C324_BAS664.png
Figure 123. Performance vs Input Common-Mode Voltage (170 MHz)
C326_BAS664.png
Figure 125. SNR vs AVDD Supply and Temperature
C328_BAS664.png
Figure 127. SNR vs DVDD Supply and Temperature
C330_BAS664.png
Figure 129. Performance vs Clock Amplitude (150 MHz)
C332_BAS664.png
Figure 131. Performance vs Clock Duty Cycle (150 MHz)

7.19 Typical Characteristics: Common Plots

Typical values are at TA= 25°C, ADC sampling rate = 160 MSPS, 50% clock duty cycle, AVDD = DVDD = 1.8 V, –1-dBFS differential input, 2-VPP full-scale, and 32k-point FFT, unless otherwise noted.
C040_BAS664.png
fS = 160 MSPS, fCM = 10 MHz, 50 mVPP, fIN = 30 MHz, Amplitude (fIN + fCM ) = –98 dBFS, Amplitude (fIN – fCM ) = –91 dBFS
Figure 133. CMRR FFT
C042_BAS664.png
fS = 160 MSPS, fPSRR = 5 MHz, 50 mVPP, fIN = 30 MHz, Amplitude (fIN + fPSRR ) = –65 dBFS, Amplitude (fIN – fPSRR ) = –67 dBFS
Figure 135. PSRR FFT for AVDD Supply
C048_BAS664.png
Figure 137. Power vs Sampling Frequency 20x Mode
C041_BAS664.png
Figure 134. CMRR vs Test Signal Frequency
C043_BAS664.png
Figure 136. PSRR vs Test Signal Frequency
C049_BAS664.png
Figure 138. Power vs Sampling Frequency 40x Mode

7.20 Typical Characteristics: Contour Plots

Typical values are at TA= 25°C, 50% clock duty cycle, AVDD = DVDD = 1.8 V, –1-dBFS differential input, 2-VPP full-scale, and 32k-point FFT, unless otherwise noted.

SFDR_0dB_BAS664.png
Figure 139. Spurious-Free Dynamic Range (SFDR) for 0-dB Gain
SFDR_6dB_BAS664.png
Figure 140. Spurious-Free Dynamic Range (SFDR) for 6-dB Gain
SNR_0dB_BAS664.png
Figure 141. Signal-to-Noise Ratio (SNR) for 0-dB Gain
SNR_6dB_BAS664.png
Figure 142. Signal-to-Noise Ratio (SNR) for 6-dB Gain