SLUSA75B July   2010  – January 2020 BQ24650

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
    1.     Device Images
      1.      Typical Application
  4. Revision History
  5. Description (continued)
  6. Pin Configuration and Functions
    1.     Pin Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Typical Characteristics
  8. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1  Battery Voltage Regulation
      2. 8.3.2  Input Voltage Regulation
      3. 8.3.3  Battery Current Regulation
      4. 8.3.4  Battery Precharge
      5. 8.3.5  Charge Termination and Recharge
      6. 8.3.6  Power Up
      7. 8.3.7  Enable and Disable Charging
      8. 8.3.8  Automatic Internal Soft-Start Charger Current
      9. 8.3.9  Converter Operation
      10. 8.3.10 Synchronous and Non-Synchronous Operation
      11. 8.3.11 Cycle-by-Cycle Charge Undercurrent
      12. 8.3.12 Input Overvoltage Protection (ACOV)
      13. 8.3.13 Input Undervoltage Lockout (UVLO)
      14. 8.3.14 Battery Overvoltage Protection
      15. 8.3.15 Cycle-by-Cycle Charge Overcurrent Protection
      16. 8.3.16 Thermal Shutdown Protection
      17. 8.3.17 Temperature Qualification
      18. 8.3.18 Charge Enable
      19. 8.3.19 Inductor, Capacitor, and Sense Resistor Selection Guidelines
      20. 8.3.20 Charge Status Outputs
      21. 8.3.21 Battery Detection
        1. 8.3.21.1 Example
    4. 8.4 Device Functional Modes
      1. 8.4.1 Converter Operation
      2. 8.4.2 Synchronous and Non-Synchronous Operation
  9. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
        1. 9.2.2.1 Inductor Selection
        2. 9.2.2.2 Input Capacitor
        3. 9.2.2.3 Output Capacitor
        4. 9.2.2.4 Power MOSFETs Selection
        5. 9.2.2.5 Input Filter Design
        6. 9.2.2.6 MPPT Temperature Compensation
      3. 9.2.3 Application Curves
  10. 10Power Supply Recommendations
  11. 11Layout
    1. 11.1 Layout Guidelines
    2. 11.2 Layout Example
  12. 12Device and Documentation Support
    1. 12.1 Device Support
      1. 12.1.1 Third-Party Products Disclaimer
    2. 12.2 Receiving Notification of Documentation Updates
    3. 12.3 Support Resources
    4. 12.4 Trademarks
    5. 12.5 Electrostatic Discharge Caution
    6. 12.6 Glossary
  13. 13Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Temperature Qualification

The controller continuously monitors battery temperature by measuring the voltage between the TS pin and GND. A negative temperature coefficient thermistor (NTC) and an external voltage divider typically develop this voltage. The controller compares this voltage against its internal thresholds to determine if charging is allowed. To initiate a charge cycle, the battery temperature must be within the VLTF to VHTF thresholds. If battery temperature is outside of this range, the controller suspends charge and waits until the battery temperature is within the VLTF to VHTF range. During the charge cycle the battery temperature must be within the VLTF to VTCO thresholds. If battery temperature is outside of this range, the controller suspends charge and waits until the battery temperature is within the VLTF to VHTF range. The controller suspends charge by turning off the PWM charge FETs. Figure 10 summarizes the operation.

BQ24650 TS_pin_sen_lusa75.gifFigure 10. TS Pin, Thermistor Sense Thresholds

Assuming a 103AT NTC thermistor on the battery pack as shown in Figure 15, the values of RT1 and RT2 can be determined by using Equation 7 and Equation 8:

Equation 7. BQ24650 EQ7_RT2_lusa75.gif
Equation 8. BQ24650 EQ8_RT1_lusa75.gif
BQ24650 res_network_lusa75.gifFigure 11. TS Resistor Network