SLUSEE3 July   2021 BQ51013B-Q1

PRODUCTION DATA  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Description (continued)
  6. Device Comparison Table
  7. Pin Configuration and Functions
  8. Specifications
    1. 8.1 Absolute Maximum Ratings
    2. 8.2 ESD Ratings
    3. 8.3 Recommended Operating Conditions
    4. 8.4 Thermal Information
    5. 8.5 Electrical Characteristics
    6. 8.6 Typical Characteristics
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1  Details of a Qi Wireless Power System and BQ51013B-Q1 Power Transfer Flow Diagrams
      2. 9.3.2  Dynamic Rectifier Control
      3. 9.3.3  Dynamic Efficiency Scaling
      4. 9.3.4  RILIM Calculations
      5. 9.3.5  Input Overvoltage
      6. 9.3.6  Adapter Enable Functionality and EN1/EN2 Control
      7. 9.3.7  End Power Transfer Packet (WPC Header 0x02)
      8. 9.3.8  Status Outputs
      9. 9.3.9  WPC Communication Scheme
      10. 9.3.10 Communication Modulator
      11. 9.3.11 Adaptive Communication Limit
      12. 9.3.12 Synchronous Rectification
      13. 9.3.13 Temperature Sense Resistor Network (TS)
      14. 9.3.14 3-State Driver Recommendations for the TS/CTRL Pin
      15. 9.3.15 Thermal Protection
      16. 9.3.16 WPC v1.2 Compliance – Foreign Object Detection
      17. 9.3.17 Receiver Coil Load-Line Analysis
    4. 9.4 Device Functional Modes
  10. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Applications
      1. 10.2.1 BQ51013B-Q1 Wireless Power Receiver Used as a Power Supply
        1. 10.2.1.1 Design Requirements
        2. 10.2.1.2 Detailed Design Procedure
          1. 10.2.1.2.1 Using The BQ51013B-Q1 as a Wireless Power Supply: (See Figure 1-1 )
          2. 10.2.1.2.2 Series and Parallel Resonant Capacitor Selection
          3. 10.2.1.2.3 Recommended RX Coils
          4. 10.2.1.2.4 COMM, CLAMP, and BOOT Capacitors
          5. 10.2.1.2.5 Control Pins and CHG
          6. 10.2.1.2.6 Current Limit and FOD
          7. 10.2.1.2.7 RECT and OUT Capacitance
        3. 10.2.1.3 Application Curves
      2. 10.2.2 Dual Power Path: Wireless Power and DC Input
        1. 10.2.2.1 Design Requirements
        2. 10.2.2.2 Detailed Design Procedure
        3. 10.2.2.3 Application Curves
      3. 10.2.3 Wireless and Direct Charging of a Li-Ion Battery at 800 mA
        1. 10.2.3.1 Design Requirements
        2. 10.2.3.2 Detailed Design Procedure
        3. 10.2.3.3 Application Curves
  11. 11Power Supply Recommendations
  12. 12Layout
    1. 12.1 Layout Guidelines
    2. 12.2 Layout Example
  13. 13Device and Documentation Support
    1. 13.1 Device Support
      1. 13.1.1 Third-Party Products Disclaimer
      2. 13.1.2 Development Support
    2. 13.2 Receiving Notification of Documentation Updates
    3. 13.3 Support Resources
    4. 13.4 Trademarks
    5. 13.5 Electrostatic Discharge Caution
    6. 13.6 Glossary
  14. 14Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Synchronous Rectification

The BQ51013B-Q1 provides an integrated, self-driven synchronous rectifier that enables high-efficiency AC to DC power conversion. The rectifier consists of an all NMOS H-Bridge driver where the backgates of the diodes are configured to be the rectifier when the synchronous rectifier is disabled. During the initial start-up of the WPC system the synchronous rectifier is not enabled. At this operating point, the DC rectifier voltage is provided by the diode rectifier. Once VRECT is greater than VUVLO, half synchronous mode will be enabled until the load current surpasses IBAT-SR. Above IBAT-SR the full synchronous rectifier stays enabled until the load current drops back below the hysteresis level (IBAT-SRH) where half-synchronous mode is enabled re-enabled.