SNLS676A May   2022  – December 2025 DP83TC813R-Q1 , DP83TC813S-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Requirements
    7. 6.7 Timing Diagrams
    8. 6.8 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Diagnostic Tool Kit
        1. 7.3.1.1 Signal Quality Indicator
        2. 7.3.1.2 Electrostatic Discharge Sensing
        3. 7.3.1.3 Time Domain Reflectometry
        4. 7.3.1.4 Voltage Sensing
        5. 7.3.1.5 BIST and Loopback Modes
          1. 7.3.1.5.1 Data Generator and Checker
          2. 7.3.1.5.2 xMII Loopback
          3. 7.3.1.5.3 PCS Loopback
          4. 7.3.1.5.4 Digital Loopback
          5. 7.3.1.5.5 Analog Loopback
          6. 7.3.1.5.6 Reverse Loopback
      2. 7.3.2 Compliance Test Modes
        1. 7.3.2.1 Test Mode 1
        2. 7.3.2.2 Test Mode 2
        3. 7.3.2.3 Test Mode 4
        4. 7.3.2.4 Test Mode 5
    4. 7.4 Device Functional Modes
      1. 7.4.1  Power Down
      2. 7.4.2  Reset
      3. 7.4.3  Standby
      4. 7.4.4  Normal
      5. 7.4.5  Sleep Ack
      6. 7.4.6  Sleep Request
      7. 7.4.7  Sleep Fail
      8. 7.4.8  Sleep
      9. 7.4.9  Wake-Up
      10. 7.4.10 TC10 System Example
      11. 7.4.11 Media Dependent Interface
        1. 7.4.11.1 100BASE-T1 Leader and 100BASE-T1 Follower Configuration
        2. 7.4.11.2 Auto-Polarity Detection and Correction
        3. 7.4.11.3 Jabber Detection
        4. 7.4.11.4 Interleave Detection
      12. 7.4.12 MAC Interfaces
        1. 7.4.12.1 Media Independent Interface
        2. 7.4.12.2 Reduced Media Independent Interface
        3. 7.4.12.3 Reduced Gigabit Media Independent Interface
        4. 7.4.12.4 Serial Gigabit Media Independent Interface
      13. 7.4.13 Serial Management Interface
        1. 7.4.13.1 Direct Register Access
        2. 7.4.13.2 Extended Register Space Access
        3. 7.4.13.3 Write Operation (No Post Increment)
        4. 7.4.13.4 Read Operation (No Post Increment)
        5. 7.4.13.5 Write Operation (Post Increment)
        6. 7.4.13.6 Read Operation (Post Increment)
    5. 7.5 Programming
      1. 7.5.1 Strap Configuration
      2. 7.5.2 LED Configuration
      3. 7.5.3 PHY Address Configuration
  9. Register Maps
    1. 8.1 Register Access Summary
    2. 8.2 DP83TC813 Registers
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Applications
      1. 9.2.1 Design Requirements
        1. 9.2.1.1 Physical Medium Attachment
          1. 9.2.1.1.1 Common-Mode Choke Recommendations
      2. 9.2.2 Detailed Design Procedure
      3. 9.2.3 Application Curves
    3. 9.3 Power Supply Recommendations
    4. 9.4 Layout
      1. 9.4.1 Layout Guidelines
        1. 9.4.1.1 Signal Traces
        2. 9.4.1.2 Return Path
        3. 9.4.1.3 Metal Pour
        4. 9.4.1.4 PCB Layer Stacking
      2. 9.4.2 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 Receiving Notification of Documentation Updates
    2. 10.2 Support Resources
    3. 10.3 Community Resources
    4. 10.4 Trademarks
    5. 10.5 Electrostatic Discharge Caution
    6. 10.6 Glossary
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Power Supply Recommendations

The DP83TC813S-Q1is capable of operating with a wide range of IO supply voltages (3.3V, 2.5V, or 1.8V). No power supply sequencing is required. Please note that inputs pins must not be driven until VDDA and VDDIO are stable. The recommended power supply de-coupling network is shown in the figure below. For improved conducted emissions, an optional ferrite bead can be placed between the supply and the PHY de-coupling network.

Typical TC-10 application block diagram along with supply and peripherals is shown below. TPS7B81-Q1 is the recommended part number to be used as 3.3V LDO for the VSLEEP rail. The low quiescent current of this LDO makes the LDO designed for TC-10 applications.

DP83TC813S-Q1 DP83TC813R-Q1 Typical TC-10 Application With PeripheralsFigure 9-9 Typical TC-10 Application With Peripherals

When VDDIO and VDDMAC are separate, both voltage rails must have a dedicated network of ferrite bead, 0.47µF, and 0.01µF capacitors. VSLEEP can also be connected to VDDA, 0.1µF capacitor must be retained in this configuration.

Current Consumption Break-Down

The following table highlights the break down of power consumption in active mode for each supply rail, specifically highlighting the split between VDDMAC and VDDIO.

Table 9-4 Active Mode Current Consumption
VOLTAGE RAILVOLTAGE (V)MAX CURRENT (mA)1
MII
VDDA3.363
VDDIO3.34
2.53
1.82
VDDMAC3.320
2.515
1.811

VSLEEP

3.32
RMII
VDDA3.363
VDDIO3.36
2.54
1.83
VDDMAC3.317
2.513
1.810

VSLEEP

3.32
RGMII
VDDA3.363
VDDIO3.34
2.53
1.82
VDDMAC3.317
2.513
1.810

VSLEEP

3.32
SGMII
VDDA3.395
VDDIO3.34
2.53
1.82
VDDMAC3.38
2.56
1.84

VSLEEP

3.32
  1. Current consumption measured across voltage, temperature, and process with active data communication.