SNLS663A December   2021  – December 2025 DP83TC814R-Q1 , DP83TC814S-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Requirements
    7. 6.7 Timing Diagrams
    8. 6.8 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Diagnostic Tool Kit
        1. 7.3.1.1 Signal Quality Indicator
        2. 7.3.1.2 Electrostatic Discharge Sensing
        3. 7.3.1.3 Time Domain Reflectometry
        4. 7.3.1.4 Voltage Sensing
        5. 7.3.1.5 BIST and Loopback Modes
          1. 7.3.1.5.1 Data Generator and Checker
          2. 7.3.1.5.2 xMII Loopback
          3. 7.3.1.5.3 PCS Loopback
          4. 7.3.1.5.4 Digital Loopback
          5. 7.3.1.5.5 Analog Loopback
          6. 7.3.1.5.6 Reverse Loopback
      2. 7.3.2 Compliance Test Modes
        1. 7.3.2.1 Test Mode 1
        2. 7.3.2.2 Test Mode 2
        3. 7.3.2.3 Test Mode 4
        4. 7.3.2.4 Test Mode 5
    4. 7.4 Device Functional Modes
      1. 7.4.1 Power Down
      2. 7.4.2 Reset
      3. 7.4.3 Standby
      4. 7.4.4 Normal
      5. 7.4.5 Media Dependent Interface
        1. 7.4.5.1 100BASE-T1 Leader and 100BASE-T1 Follower Configuration
        2. 7.4.5.2 Auto-Polarity Detection and Correction
        3. 7.4.5.3 Jabber Detection
        4. 7.4.5.4 Interleave Detection
      6. 7.4.6 MAC Interfaces
        1. 7.4.6.1 Media Independent Interface
        2. 7.4.6.2 Reduced Media Independent Interface
        3. 7.4.6.3 Reduced Gigabit Media Independent Interface
        4. 7.4.6.4 Serial Gigabit Media Independent Interface
      7. 7.4.7 Serial Management Interface
        1. 7.4.7.1 Direct Register Access
        2. 7.4.7.2 Extended Register Space Access
        3. 7.4.7.3 Write Operation (No Post Increment)
        4. 7.4.7.4 Read Operation (No Post Increment)
        5. 7.4.7.5 Write Operation (Post Increment)
        6. 7.4.7.6 Read Operation (Post Increment)
    5. 7.5 Programming
      1. 7.5.1 Strap Configuration
      2. 7.5.2 LED Configuration
      3. 7.5.3 PHY Address Configuration
  9. Register Maps
    1. 8.1 Register Access Summary
    2. 8.2 DP83TC814 Registers
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Applications
      1. 9.2.1 Design Requirements
        1. 9.2.1.1 Physical Medium Attachment
          1. 9.2.1.1.1 Common-Mode Choke Recommendations
      2. 9.2.2 Detailed Design Procedure
      3. 9.2.3 Application Curves
    3. 9.3 Power Supply Recommendations
    4. 9.4 Layout
      1. 9.4.1 Layout Guidelines
        1. 9.4.1.1 Signal Traces
        2. 9.4.1.2 Return Path
        3. 9.4.1.3 Metal Pour
        4. 9.4.1.4 PCB Layer Stacking
      2. 9.4.2 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 Receiving Notification of Documentation Updates
    2. 10.2 Support Resources
    3. 10.3 Trademarks
    4. 10.4 Electrostatic Discharge Caution
    5. 10.5 Glossary
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Pin Configuration and Functions

Figure 5-1 DP83TC814S-Q1 RHA Package
36-Pin VQFN
Top View
Figure 5-2 DP83TC814R-Q1 RHA Package
36-Pin VQFN
Top View
Table 5-1 Pin Functions
PINTYPE(1)DESCRIPTION
NAME(2)NO.
MAC INTERFACE

RX_D3
RX_M

23S, PD, O

Receive Data: Symbols received on the cable are decoded and transmitted out of these pins synchronous to the rising edge of RX_CLK. Data is considered valid when RX_DV is asserted. A data nibble, RX_D[3:0], is transmitted in MII and RGMII modes. 2 bits; RX_D[1:0], are transmitted in RMII mode. RX_D[3:2] are not used when in RMII Follower mode.

If the PHY is bootstrapped to RMII Leader mode, a 50MHz clock reference is automatically outputted on RX_D3. This clock must be fed to the MAC.

RX_M / RX_P: Differential SGMII Data Output. These pins transmit data from the PHY to the MAC. Use the strap resistors in RX_D3 pin in SGMII mode.

RX_D2
RX_P

24

RX_D1

25

RX_D0

26
RX_CLK27PD, O

Receive Clock: In MII and RGMII modes, the receive clock provides a 25MHz reference clock.

Unused in RMII and SGMII modes

RX_ER14S, PD, O

Receive Error: In MII and RMII modes, this pin indicates a receive error symbol has been detected within a received packet. In MII mode, RX_ER is asserted high synchronously to the rising edge of RX_CLK. In RMII mode, RX_ER is asserted high synchronously to the rising edge of the reference clock. This pin is not required to be used by the MAC in MII or RMII because the PHY automatically corrupts data on a receive error.

Unused in RGMII and SGMII modes

RX_DV
CRS_DV
RX_CTRL
15S, PD, O

Receive Data Valid: This pin indicates when valid data is presented on RX_D[3:0] for MII mode.

Carrier Sense Data Valid: This pin combines carrier sense and data valid into an asynchronous signal. When CRS_DV is asserted, data is presented on RX_D[1:0] in RMII mode. To set Pin 15 as CRS_DV, set 0x0551=0x0010 (Default).

RGMII Receive Control: Receive control combines receive data valid indication and receive error indication into a single signal. RX_DV is presented on the rising edge of RX_CLK and RX_ER is presented on the falling edge of RX_CLK. To set Pin 15 as RX_DV, set 0x0551=0x0000.

Unused in SGMII mode

TX_CLK28PD, I, O

Transmit Clock: In MII mode, the transmit clock is a 25MHz output (50Ω Driver) and has constant phase referenced to the reference clock. In RGMII mode, this clock is sourced from the MAC layer to the PHY. A 25MHz clock must be provided (not required to have constant phase to the reference clock unless synchronous RGMII is enabled)

Unused in RMII and SGMII modes

TX_EN
TX_CTRL
29PD, I

Transmit Enable: In MII mode, transmit enable is presented prior to the rising edge of the transmit clock. TX_EN indicates the presence of valid data inputs on TX_D[3:0]. In RMII mode, transmit enable is presented prior to the rising edge of the reference clock. TX_EN indicates the presence of valid data inputs on TX_D[1:0].

RGMII Transmit Control: Transmit control combines transmit enable and transmit error indication into a single signal. TX_EN is presented prior to the rising edge of TX_CLK; TX_ER is presented prior to the falling edge of TX_CLK.

Unused in SGMII mode

TX_D330PD, I

Transmit Data: In MII and RGMII modes, the transmit data nibble, TX_D[3:0], is received from the MAC prior to the rising edge of TX_CLK. In RMII mode, TX_D[1:0] is received from the MAC prior to the rising edge of the reference clock. TX_D[3:2] are not used in RMII mode.

TX_M / TX_P: Differential SGMII Data Input. These pins receive data that is transmitted from the MAC to the PHY.

TX_D231

TX_D1
TX_P

32

TX_D0
TX_M

33
SERIAL MANAGEMENT INTERFACE
MDC1I

Management Data Clock: Synchronous clock to the MDIO serial management input and output data. This clock can be asynchronous to the MAC transmit and receive clocks. The maximum clock rate is 20MHz. There is no minimum clock rate.

MDIO36OD, IO

Management Data Input/Output: Bidirectional management data signal that can be sourced by the management station or the PHY. This pin requires a pullup resistor. In systems with multiple PHYs using same MDIO-MDC bus, a single pull-up resistor must be used on MDIO line.

Recommended to use a resistor between 2.2kΩ and 9kΩ.

MDIO/MDC Access is required to pass Open Alliance Compliance. See Section 7.3.2

CONTROL INTERFACE
INT2PU, OD, IO

Interrupt: Active-LOW output, which is asserted LOW when an interrupt condition occurs. This pin has a weak internal pullup. Register access is necessary to enable various interrupt triggers. Once an interrupt event flag is set, register access is required to clear the interrupt event. This pin can be configured as an Active-HIGH output using register 0x0011.

Interrupt status from Reg 12-13 is recommended to be read only when INT_N is LOW. This pin can also operate as Power-Down control where asserting this pin low puts the PHY in power down mode and asserting high puts the PHY in normal mode. This feature can also be enabled using the register 0x0011.

RESET3PU, I

Reset: Active-LOW input, which initializes or reinitializes the PHY. Asserting this pin LOW for at least 1μs forces a reset process to occur. All internal registers reinitializes to the default states as specified for each bit in the Register Maps section. All bootstrap pins are resampled upon deassertion of reset.

CLOCK INTERFACE
XI5I

Reference Clock Input (RMII): Reference clock 50MHz CMOS-level oscillator in RMII Follower mode. Reference clock 25MHz crystal or oscillator in RMII Leader mode.

Reference Clock Input (Other MAC Interfaces): Reference clock 25MHz crystal or oscillator input. The device supports either an external crystal resonator connected across pins XI and XO, or an external CMOS-level oscillator connected to pin XI only and XO left floating. This pin can also accept clock input from other devices like Ethernet MAC or another Ethernet PHY in daisy-chain operations.

XO4O

Reference Clock Output: XO pin is used for crystal only. This pin must be left floating when a CMOS-level oscillator is connected to XI.

LED/GPIO INTERFACE
LED_0 / GPIO_035S, PD, IO

LED_0: Link Status LED. This pin can also be used as LED or clock output via Register selection.

LED_1 / GPIO_16S, PD, IO

LED_1: Link Status and BLINK for TX/RX Activity. This pin can also be used as LED or clock output via Strap/Register selection.

CLKOUT / GPIO_216IO

Clock Output: 25MHz reference clock in all modes except RMII Follower, which is 50MHz instead. This pin can also be used as LED or GPIO via Strap/Register selection. Program register<0x045F>=0x000F and register<0x0453>=0x0003 to disable switching on CLKOUT pin

MEDIUM DEPENDENT INTERFACE
TRD_M13IO

Differential Transmit and Receive: Bidirectional differential signaling configured for 100BASE-T1 operation, IEEE 802.3bw compliant.

TRD_P12
GROUND ESCAPE
GND_ESC17

Ground Escape: Optional ground escape pins. These pins can be connected to ground to optimize PCB layout. These pins are not substitute for power ground connection to DAP. DAP must always be connected to power ground.

This pin can be left unconnected if not used.

GND_ESC18

Ground Escape: Optional ground escape pins. These pins can be connected to ground to optimize PCB layout. These pins are not substitute for power ground connection to DAP. DAP must always be connected to power ground.

This pin can be left unconnected if not used.

POWER CONNECTIONS
VDDA11SUPPLY

Core Supply: 3.3V

Recommend using 0.47µF and 0.01µF ceramic decoupling capacitors; optional ferrite bead can be used.

VDDIO34SUPPLY

IO Supply: 1.8V, 2.5V, or 3.3V

Recommend using ferrite bead, 0.47µF and 0.01µF ceramic decoupling capacitors.

VDDMAC22SUPPLY

Optional MAC Interface Supply: 1.8V, 2.5V, or 3.3V

Optional separate supply for MAC interface pins. This pin supplies power to the MAC interface pins and can be kept at a different voltage level as compared to other IO pins. Recommend using 0.47µF, and 0.01µF ceramic decoupling capacitors and ferrite bead. When separate VDDMAC is not required in the system then the pin must be connected to VDDIO. When connecting to VDDIO, 0.47µF on the VDDIO can be removed. 0.47µF must still be connected close to VDDMAC. In this case, one common ferrite bead can be used between VDDIO and VDDMAC.

VDDA7SUPPLY

VDDA Supply: 3.3V

Recommend using 0.1µF ceramic decoupling capacitors.

GROUNDDAPGROUND

Ground: This must always be connected to power ground.

DO NOT CONNECT
DNC8

DNC: Do not connect (leave floating)

DNC10

DNC: Do not connect (leave floating)

DNC19

DNC: Do not connect (leave floating)

DNC20

DNC: Do not connect (leave floating)

RECOMMENDED FOR FUTURE EMC ENHANCEMENTS
Pin 99

Connect to Pin 21

Pin 2121

Connect 2.2µF and 0.1µF ceramic capacitors from Pin 21 to GND

Pin Type:
I = Input
O = Output
IO = Input/Output
OD = Open Drain
PD = Internal pulldown
PU = Internal pullup
S = Bootstrap configuration pin (all configuration pins have weak internal pullups or pulldowns)
When pins are unused, follow the recommended connection requirements provided in the table above. If pins do not have required termination, the pins can be left floating.
Table 5-2 Pin Domain
PIN NOPIN NAMEVOLTAGE DOMAIN
1MDCVDDIO
2INT_NVDDIO
3RESET_NVDDIO
4XOVDDIO
5XIVDDIO
6LED_1/GPIO_1VDDIO
12TRD_PVDDA
13TRD_MVDDA
14RX_ERVDDMAC
15RX_DV/CRS_DV/RX_CTRLVDDMAC
16CLKOUT/GPIO_2VDDMAC
23RX_D3/RX_MVDDMAC
24RX_D2/RX_PVDDMAC
25RX_D1VDDMAC
26RX_D0VDDMAC
27RX_CLKVDDMAC
28TX_CLKVDDMAC
29TX_EN/TX_CTRLVDDMAC
30TX_D3VDDMAC
31TX_D2VDDMAC
32TX_D1/TX_PVDDMAC
33TX_D0/TX_MVDDMAC
35LED_0/GPIO_0VDDIO
36MDIOVDDIO
Table 5-3 Pin States - POWER-UP / RESET
PIN NOPIN
NAME
POWER-UP / RESET
PIN STATE (1)PULL TYPEPULL VALUE
(kΩ)
1MDCInonenone
2INTIPU9
3RESETIPU9
4XOOnonenone
5XIInonenone
6LED_1IPD9
7

VDDA

SUPPLYnonenone
8

DNC

I/OPD455
9NCFLOATnonenone
10

DNC

OD, Ononenone
11VDDASUPPLYnonenone
12TRD_PIOnonenone
13TRD_MIOnonenone
14RX_ERIPD6
15RX_DVIPD6
16CLKOUTOnonenone
17GND_ESCFLOATnonenone
18GND_ESCIPD50
19DNCFLOATnonenone
20DNCFLOATnonenone
21NCFLOATnonenone
22VDDMACSUPPLYnonenone
23RX_D3IPD9
24RX_D2IPD9
25RX_D1IPD9
26RX_D0IPD9
27RX_CLKIPD9
28TX_CLKInonenone
29TX_ENInonenone
30TX_D3Inonenone
31TX_D2Inonenone
32TX_D1Inonenone
33TX_D0Inonenone
34VDDIOSUPPLYnonenone
35LED_0IPD9
36MDIOOD, IOnonenone
Table 5-4 Pin States - MAC ISOLATE and IEEE PWDN
PIN NOPIN
NAME
MAC ISOLATEIEEE PWDN
PIN STATE (1)PULL TYPEPULL VALUE
(kΩ)
PIN STATE (1)PULL TYPEPULL VALUE
(kΩ)
1MDCInonenoneInonenone
2INTOD, OPU9OD, OPU9
3RESETIPU9IPU9
4XOOnonenoneOnonenone
5XIInonenoneInonenone
6LED_1OnonenoneOnonenone
7

VDDA

SUPPLYnonenoneSUPPLYnonenone
8

DNC

IOPD455IOPD455
9NCFLOATnonenoneFLOATnonenone
10

DNC

OD, OnonenoneOD, Ononenone
11VDDASUPPLYnonenoneSUPPLYnonenone
12TRD_PIOnonenoneIOnonenone
13TRD_MIOnonenoneIOnonenone
14RX_ERIPD6IPD6
15RX_DVIPD6Ononenone
16CLKOUTOnonenoneOnonenone
17GND_ESCFLOATnonenoneFLOATnonenone
18GND_ESCFLOATnonenoneFLOATnonenone
19DNCFLOATnonenoneFLOATnonenone
20DNCFLOATnonenoneFLOATnonenone
21DNCFLOATnonenoneFLOATnonenone
22VDDMACSUPPLYnonenoneSUPPLYnonenone
23RX_D3IPD9Ononenone
24RX_D2IPD9Ononenone
25RX_D1IPD9Ononenone
26RX_D0IPD9Ononenone
27RX_CLKIPD9Ononenone
28TX_CLKIPD9Inonenone
29TX_ENIPD9Inonenone
30TX_D3IPD9Inonenone
31TX_D2IPD9Inonenone
32TX_D1IPD9Inonenone
33TX_D0IPD9Inonenone
34VDDIOSUPPLYnonenoneSUPPLYnonenone
35LED_0OnonenoneOnonenone
36MDIOOD, IOnonenoneOD, IOnonenone
Table 5-5 Pin States - MII and RGMII
PIN NOPIN
NAME
MIIRGMII
PIN STATE (1)PULL TYPEPULL VALUE
(kΩ)
PIN STATE (1)PULL TYPEPULL VALUE
(kΩ)
1MDCInonenoneInonenone
2INTOD, OPU9OD, OPU9
3RESETIPU9IPU9
4XOOnonenoneOnonenone
5XIInonenoneInonenone
6LED_1OnonenoneOnonenone
7

VDDA

SUPPLYnonenoneSUPPLYnonenone
8

DNC

IOPD455IOPD455
9NCFLOATnonenoneFLOATnonenone
10

DNC

OD, OnonenoneOD, Ononenone
11VDDASUPPLYnonenoneSUPPLYnonenone
12TRD_PIOnonenoneIOnonenone
13TRD_MIOnonenoneIOnonenone
14RX_EROnonenoneIPD6
15RX_DVOnonenoneOnonenone
16CLKOUTOnonenoneOnonenone
17GND_ESCFLOATnonenoneFLOATnonenone
18GND_ESCFLOATnonenoneFLOATnonenone
19DNCFLOATnonenoneFLOATnonenone
20DNCFLOATnonenoneFLOATnonenone
21DNCFLOATnonenoneFLOATnonenone
22VDDMACSUPPLYnonenoneSUPPLYnonenone
23RX_D3OnonenoneOnonenone
24RX_D2OnonenoneOnonenone
25RX_D1OnonenoneOnonenone
26RX_D0OnonenoneOnonenone
27RX_CLKOnonenoneOnonenone
28TX_CLKOnonenoneInonenone
29TX_ENInonenoneInonenone
30TX_D3InonenoneInonenone
31TX_D2InonenoneInonenone
32TX_D1InonenoneInonenone
33TX_D0InonenoneInonenone
34VDDIOSUPPLYnonenoneSUPPLYnonenone
35LED_0OnonenoneOnonenone
36MDIOOD, IOnonenoneOD, IOnonenone
Table 5-6 Pin States - RMII LEADER and RMII FOLLOWER
PIN NOPIN
NAME
RMII LEADERRMII FOLLOWER
PIN STATE (1)PULL TYPEPULL VALUE
(kΩ)
PIN STATE (1)PULL TYPEPULL VALUE
(kΩ)
1MDCInonenoneInonenone
2INTOD, OPU9OD, OPU9
3RESETIPU9IPU9
4XOOnonenoneOnonenone
5XIInonenoneInonenone
6LED_1OnonenoneOnonenone
7

VDDA

SUPPLYnonenoneSUPPLYnonenone
8

DNC

IOPD455IOPD455
9NCFLOATnonenoneFLOATnonenone
10

DNC

OD, OnonenoneOD, Ononenone
11VDDASUPPLYnonenoneSUPPLYnonenone
12TRD_PIOnonenoneIOnonenone
13TRD_MIOnonenoneIOnonenone
14RX_EROnonenoneOnonenone
15RX_DVOnonenoneOnonenone
16CLKOUTOnonenoneOnonenone
17GND_ESCFLOATnonenoneFLOATnonenone
18GND_ESCFLOATnonenoneFLOATnonenone
19DNCFLOATnonenoneFLOATnonenone
20DNCFLOATnonenoneFLOATnonenone
21DNCFLOATnonenoneFLOATnonenone
22VDDMACSUPPLYnonenoneSUPPLYnonenone
23RX_D3O, 50MHznonenoneIPD9
24RX_D2IPD9IPD9
25RX_D1OnonenoneOnonenone
26RX_D0OnonenoneOnonenone
27RX_CLKIPD9IPD9
28TX_CLKInonenoneInonenone
29TX_ENInonenoneInonenone
30TX_D3InonenoneInonenone
31TX_D2InonenoneInonenone
32TX_D1InonenoneInonenone
33TX_D0InonenoneInonenone
34VDDIOSUPPLYnonenoneSUPPLYnonenone
35LED_0OnonenoneOnonenone
36MDIOOD, IOnonenoneOD, IOnonenone
Table 5-7 Pin States - SGMII
PIN NOPIN
NAME
SGMII
PIN STATE (1)PULL TYPEPULL VALUE
(kΩ)
1MDCInonenone
2INTOD, OPU9
3RESETIPU9
4XOOnonenone
5XIInonenone
6LED_1Ononenone
7

VDDA

SUPPLYnonenone
8

DNC

IOPD455
9NCFLOATnonenone
10

DNC

OD, Ononenone
11VDDASUPPLYnonenone
12TRD_PIOnonenone
13TRD_MIOnonenone
14RX_ERIPD6
15RX_DVIPD6
16CLKOUTOnonenone
17GND_ESCFLOATnonenone
18GND_ESCFLOATnonenone
19DNCFLOATnonenone
20DNCFLOATnonenone
21DNCFLOATnonenone
22VDDMACSUPPLYnonenone
23RX_D3Ononenone
24RX_D2Ononenone
25RX_D1IPD9
26RX_D0IPD9
27RX_CLKIPD9
28TX_CLKInonenone
29TX_ENInonenone
30TX_D3Inonenone
31TX_D2Inonenone
32TX_D1Inonenone
33TX_D0Inonenone
34VDDIOSUPPLYnonenone
35LED_0Ononenone
36MDIOOD, IOnonenone
Type: I = Input
O = Output
IO = Input/Output
OD = Open Drain
PD = Internal pulldown
PU = Internal pullup