SNVSCU2B August   2024  – August 2025 LM5137-Q1

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Related Products
  6. Pin Configuration and Functions
    1. 5.1 Wettable Flanks
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Typical Characteristics
  8. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1  Input Voltage Range (VIN)
      2. 7.3.2  Bias Supply Regulator (VCC, BIAS1/VOUT1, VDDA)
      3. 7.3.3  Precision Enable (EN1, EN2)
      4. 7.3.4  Switching Frequency (RT)
      5. 7.3.5  Pulse Frequency Modulation and Synchronization (PFM/SYNC)
      6. 7.3.6  Synchronization Out (SYNCOUT)
      7. 7.3.7  Dual Random Spread Spectrum (DRSS)
      8. 7.3.8  Configurable Soft Start (RSS)
      9. 7.3.9  Output Voltage Setpoints (FB1, FB2)
      10. 7.3.10 Error Amplifier and PWM Comparator (FB1, FB2, COMP1, COMP2)
        1. 7.3.10.1 Slope Compensation
      11. 7.3.11 Inductor Current Sense (ISNS1+, BIAS1/VOUT1, ISNS2+, VOUT2)
        1. 7.3.11.1 Shunt Current Sensing
        2. 7.3.11.2 Inductor DCR Current Sensing
      12. 7.3.12 Minimum Controllable On-Time
      13. 7.3.13 100% Duty Cycle Capability
      14. 7.3.14 MOSFET Gate Drivers (HO1, HO2, LO1, LO2)
      15. 7.3.15 Output Configurations (CNFG)
        1. 7.3.15.1 Independent Dual-Output Operation
        2. 7.3.15.2 Single-Output Interleaved Operation
        3. 7.3.15.3 Single-Output Multiphase Operation
    4. 7.4 Device Functional Modes
      1. 7.4.1 Sleep Mode
      2. 7.4.2 PFM Mode
  9. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Power Train Components
        1. 8.1.1.1 Power MOSFETs
        2. 8.1.1.2 Buck Inductor
        3. 8.1.1.3 Output Capacitors
        4. 8.1.1.4 Input Capacitors
        5. 8.1.1.5 EMI Filter
      2. 8.1.2 Error Amplifier and Compensation
    2. 8.2 Typical Applications
      1. 8.2.1 Design 1 – Dual 5V and 3.3V, 20A Buck Regulator for 12V Automotive Battery Applications
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
          1. 8.2.1.2.1 Custom Design With WEBENCH® Tools
          2. 8.2.1.2.2 Custom Design With Excel Quickstart Tool
          3. 8.2.1.2.3 Inductor Calculations
          4. 8.2.1.2.4 Shunt Resistors
          5. 8.2.1.2.5 Ceramic Output Capacitors
          6. 8.2.1.2.6 Ceramic Input Capacitors
          7. 8.2.1.2.7 Feedback Resistors
          8. 8.2.1.2.8 Input Voltage UVLO Resistors
          9. 8.2.1.2.9 Compensation Components
        3. 8.2.1.3 Application Curves
      2. 8.2.2 Design 2 – Two-Phase, Single-Output Synchronous Buck Regulator for Automotive ADAS Applications
        1. 8.2.2.1 Design Requirements
        2. 8.2.2.2 Detailed Design Procedure
      3. 8.2.3 Design 3 – 12V, 20A, 400kHz, Two-Phase Buck Regulator for 48V Automotive Applications
        1. 8.2.3.1 Design Requirements
        2. 8.2.3.2 Detailed Design Procedure
        3. 8.2.3.3 Application Curves
    3. 8.3 Power Supply Recommendations
    4. 8.4 Layout
      1. 8.4.1 Layout Guidelines
        1. 8.4.1.1 Power Stage Layout
        2. 8.4.1.2 Gate Drive Layout
        3. 8.4.1.3 PWM Controller Layout
        4. 8.4.1.4 Thermal Design and Layout
        5. 8.4.1.5 Ground Plane Design
      2. 8.4.2 Layout Example
  10. Device and Documentation Support
    1. 9.1 Device Support
      1. 9.1.1 Third-Party Products Disclaimer
      2. 9.1.2 Development Support
        1. 9.1.2.1 Custom Design With WEBENCH® Tools
    2. 9.2 Documentation Support
      1. 9.2.1 Related Documentation
        1. 9.2.1.1 Low-EMI Design Resources
        2. 9.2.1.2 Thermal Design Resources
        3. 9.2.1.3 PCB Layout Resources
    3. 9.3 Receiving Notification of Documentation Updates
    4. 9.4 Support Resources
    5. 9.5 Trademarks
    6. 9.6 Electrostatic Discharge Caution
    7. 9.7 Glossary
  11. 10Revision History
  12. 11Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Typical Characteristics

VIN = 12V, TJ = 25°C, unless otherwise stated.

LM5137-Q1 Efficiency vs Load, 5V Output
See Figure 8-4 VEN2 = 0V FSW = 440kHz
Figure 6-1 Efficiency vs Load, 5V Output
LM5137-Q1 Start-up Characteristic
See Figure 8-4 5A resistive loads
Figure 6-3 Start-up Characteristic
LM5137-Q1 Load
                        Transient Response
See Figure 8-4 VOUT1 = 5V 2A/µs slew rate
Figure 6-5 Load Transient Response
LM5137-Q1 Shutdown Quiescent Current vs Temperature
VEN1 = 0V, VEN2 = 0V
Figure 6-7 Shutdown Quiescent Current vs Temperature
LM5137-Q1 Sleep
                        Quiescent Current vs Temperature
VIN = 12V, VVOUT1 = 5V, VVOUT2 = 3.3V
Figure 6-9 Sleep Quiescent Current vs Temperature
LM5137-Q1 Fixed
                        3.3V Output Voltage vs TemperatureFigure 6-11 Fixed 3.3V Output Voltage vs Temperature
LM5137-Q1 Fixed 12V Output Voltage vs TemperatureFigure 6-13 Fixed 12V Output Voltage vs Temperature
LM5137-Q1 VDDA
                        Regulation Voltage vs Temperature
IVDDA = 0mA
Figure 6-15 VDDA Regulation Voltage vs Temperature
LM5137-Q1 VCC
                        UVLO Thresholds vs TemperatureFigure 6-17 VCC UVLO Thresholds vs Temperature
LM5137-Q1 PG UV
                        Thresholds vs TemperatureFigure 6-19 PG UV Thresholds vs Temperature
LM5137-Q1 Current Sense Amplifier Gain vs TemperatureFigure 6-21 Current Sense Amplifier Gain vs Temperature
LM5137-Q1 EN
                        Rising Threshold Voltage vs TemperatureFigure 6-23 EN Rising Threshold Voltage vs Temperature
LM5137-Q1 RT
                        Resistance vs Switching FrequencyFigure 6-25 RT Resistance vs Switching Frequency
LM5137-Q1 Efficiency vs Load, 3.3V Output
See Figure 8-4 VEN1 = 0V FSW = 440kHz
Figure 6-2 Efficiency vs Load, 3.3V Output
LM5137-Q1 Shutdown Characteristic
See Figure 8-4 5A resistive loads
Figure 6-4 Shutdown Characteristic
LM5137-Q1 Switch-Node Voltages
See Figure 8-20 VIN = 48V VOUT = 12V
Figure 6-6 Switch-Node Voltages
LM5137-Q1 
                        Standby Quiescent Current vs Temperature
0.6V < VEN1/2 < 1V
Figure 6-8 Standby Quiescent Current vs Temperature
LM5137-Q1 Sleep
                        Quiescent Current vs Temperature
VIN = 48V, VVOUT1 = 5V, VVOUT2 = 3.3V
Figure 6-10 Sleep Quiescent Current vs Temperature
LM5137-Q1 Fixed
                        5V Output Voltage vs TemperatureFigure 6-12 Fixed 5V Output Voltage vs Temperature
LM5137-Q1 Feedback Voltage vs TemperatureFigure 6-14 Feedback Voltage vs Temperature
LM5137-Q1 VCC
                        Regulation Voltage vs Temperature
IVCC = 20mA
Figure 6-16 VCC Regulation Voltage vs Temperature
LM5137-Q1 VCC
                        Current Limit vs TemperatureFigure 6-18 VCC Current Limit vs Temperature
LM5137-Q1 PG OV
                        Thresholds vs TemperatureFigure 6-20 PG OV Thresholds vs Temperature
LM5137-Q1 Current Sense Threshold vs TemperatureFigure 6-22 Current Sense Threshold vs Temperature
LM5137-Q1 Minimum On Time vs TemperatureFigure 6-24 Minimum On Time vs Temperature
LM5137-Q1 RSS
                        Resistance vs Soft-start TimeFigure 6-26 RSS Resistance vs Soft-start Time