SNAS393D March   2007  – November 2016 LME49720

PRODUCTION DATA.  

  1. Features
  2. Applications
  3. Description
  4. Revision History
  5. Device Comparison Table
  6. Pin Configuration and Functions
  7. Specifications
    1. 7.1 Absolute Maximum Ratings
    2. 7.2 ESD Ratings
    3. 7.3 Recommended Operating Conditions
    4. 7.4 Thermal Information
    5. 7.5 Electrical Characteristics
    6. 7.6 Typical Characteristics
  8. Parameter Measurement Information
    1. 8.1 Distortion Measurements
  9. Detailed Description
    1. 9.1 Overview
    2. 9.2 Functional Block Diagram
    3. 9.3 Feature Description
      1. 9.3.1 Capacitive Load
      2. 9.3.2 Balance Cable Driver
    4. 9.4 Device Functional Modes
  10. 10Application and Implementation
    1. 10.1 Application Information
    2. 10.2 Typical Applications
      1. 10.2.1 Single Ended Converter
        1. 10.2.1.1 Design Requirements
        2. 10.2.1.2 Detailed Design Procedure
          1. 10.2.1.2.1 Surface Mount Capacitors
        3. 10.2.1.3 Application Curves
      2. 10.2.2 Other Applications
  11. 11Power Supply Recommendations
    1. 11.1 Power Supply Decoupling Capacitors
  12. 12Layout
    1. 12.1 Layout Guidelines
      1. 12.1.1 Component Placement
    2. 12.2 Layout Example
  13. 13Device and Documentation Support
    1. 13.1 Receiving Notification of Documentation Updates
    2. 13.2 Community Resources
    3. 13.3 Trademarks
    4. 13.4 Electrostatic Discharge Caution
    5. 13.5 Glossary
  14. 14Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Specifications

Absolute Maximum Ratings

see (1)(3)(2)
MIN MAX UNIT
Power Supply Voltage   (VS = V+ – V) 36 V
Input Voltage (V–) – 0.7V (V+) + 0.7 V
Output Short Circuit (4) Continuous
Power Dissipation Internally Limited
Junction Temperature 150 °C
Temperature Range TMIN ≤ TA ≤ TMAX –40 85 °C
Supply Voltage Range ±2.5V ≤ VS ≤ ± 17V V
Storage Temperature −65 150 °C
Absolute Maximum Ratings indicate limits beyond which damage to the device may occur.
If Military/Aerospace specified devices are required, please contact the Texas Instruments Sales Office/ Distributors for availability and specifications.
Operating Ratings indicate conditions for which the device is functional, but do not ensure specific performance limits. For enusred specifications and test conditions, see Electrical Characteristics. The ensured specifications apply only for the test conditions listed. Some performance characteristics may degrade when the device is not operated under the listed test conditions.
Amplifier output connected to GND, any number of amplifiers within a package.

ESD Ratings

VALUE UNIT
V(ESD) Electrostatic discharge Human-body model (HBM) (1) All pins 2000 V
Machine Model (MM), per EIAJ IC-121-1981Application and Implementation Pins 1, 4, 7 and 8 200
Pins 2, 3, 5 and 6 100
Human body model, 100pF discharged through a 1.5kΩ resistor.

Recommended Operating Conditions

over operating free-air temperature range (unless otherwise noted)
MIN NOM MAX UNIT
V+,V– Supply voltage ±2.5 ±17 V
TA Operating free-air temperature –40 85 °C
TJ Operating junction temperature –40 150 °C

Thermal Information

THERMAL METRIC(1) LME49720 UNIT
D
(SOIC)
P
(PDIP)
LMC
(TO-99)(2)
8 PINS 8 PINS 8 PINS
RθJA Junction-to-ambient thermal resistance 107.9 72.9 150 °C/W
RθJC(top) Junction-to-case (top) thermal resistance 52 77.2 35 °C/W
RθJB Junction-to-board thermal resistance 48.3 44.9 °C/W
ψJT Junction-to-top characterization parameter 8.2 35.7 °C/W
ψJB Junction-to-board characterization parameter 47.8 49.9 °C/W
RθJC(bot) Junction-to-case (bottom) thermal resistance N/A N/A °C/W
For more information about traditional and new thermal metrics, see the Semiconductor and IC Package Thermal Metrics application report.
Thermal performance of a TO-99 package will depend strongly on mounting condition and there is no standard mounting configuration on a JEDEC PCB for that package type.

Electrical Characteristics

The following specifications apply for VS = ±15V, RL = 2kΩ, fIN = 1kHz, and TA = 25°C, unless otherwise specified.
PARAMETER TEST CONDITIONS MIN(2) TYP (1) MAX(2) UNIT
THD+N Total harmonic distortion + noise AV = 1, VOUT = 3Vrms
 RL = 2kΩ
 RL = 600Ω
0.00003
0.00003
0.00009 %
IMD Intermodulation distortion AV = 1, VOUT = 3VRMS
Two-tone, 60Hz & 7kHz 4:1
0.00005 %
GBWP Gain bandwidth product 45 55 MHz
SR Slew rate ±15 ±20 V/μs
FPBW Full power bandwidth VOUT = 1VP-P, –3dB
referenced to output magnitude
at f = 1kHz
10 MHz
ts Settling time AV = –1, 10V step, CL = 100pF
0.1% error range
1.2 μs
en Equivalent input noise voltage fBW = 20Hz to 20kHz 0.34 0.65 μVRMS
Equivalent input noise density f = 1kHz
f = 10Hz
2.7
6.4
4.7 nV/Hz
in Current noise density f = 1kHz
f = 10Hz
1.6
3.1
pA/Hz
VOS Offset voltage ±0.1 ±0.7 mV
ΔVOS/ΔTemp Average input offset voltage drift vs temperature –40°C ≤ TA ≤ 85°C 0.2 μV/°C
PSRR Average input offset voltage shift vs power supply voltage ΔVS = 20V (3) 110 120 dB
ISOCH-CH Channel-to-Channel isolation fIN = 1kHz
fIN = 20kHz
118
112
dB
IB Input bias current VCM = 0V 10 72 nA
ΔIOS/ΔTemp Input bias current drift vs temperature –40°C ≤ TA ≤ 85°C 0.1 nA/°C
IOS Input offset current VCM = 0V 11 65 nA
VIN-CM Common-Mode input voltage range (V+) – 2.0
(V-) + 2.0
+14.1
–13.9
V
CMRR Common-Mode rejection –10V<Vcm<10V 110 120 dB
ZIN Differential input impedance 30
Common mode input impedance –10V<Vcm<10V 1000
AVOL Open loop voltage gain –10V<Vout<10V, RL = 600Ω 125 140 dB
–10V<Vout<10V, RL = 2kΩ 140
–10V<Vout<10V, RL = 10kΩ 140
VOUTMAX Maximum output voltage swing RL = 600Ω ±12.5 ±13.6 V
RL = 2kΩ ±14.0
RL = 10kΩ ±14.1
IOUT Output current RL = 600Ω, VS = ±17V ±23 ±26 mA
IOUT-CC Instantaneous short circuit current +53
–42
mA
ROUT Output impedance fIN = 10kHz
Closed-Loop
Open-Loop
0.01
13
Ω
CLOAD Capacitive load drive overshoot 100pF 16 %
IS Total quiescent current IOUT = 0mA 10 12 mA
Typical specifications are specified at +25ºC and represent the most likely parametric norm.
Tested limits are ensured to AOQL (Average Outgoing Quality Level).
PSRR is measured as follows: VOS is measured at two supply voltages, ±5V and ±15V. PSRR = | 20log(ΔVOS/ΔVS) |.

Typical Characteristics

LME49720 300038k6.gif
Figure 1. Thd+N vs Output Voltage VCC = 15V, VEE = –15V RL = 2kΩ
LME49720 300038k8.gif
Figure 3. Thd+N vs Output Voltage VCC = 17V, VEE = –17v RL = 2kΩ
LME49720 300038k9.gif
Figure 5. Thd+N vs Output Voltage VCC = 15V, VEE = –15V RL = 600Ω
LME49720 300038l1.gif
Figure 7. Thd+N vs Output Voltage VCC = 17V, VEE = –17V RL = 600Ω
LME49720 300038l2.gif
Figure 9. Thd+N vs Output Voltage VCC = 15V, VEE = –15V RL = 10kΩ
LME49720 300038l4.gif
Figure 11. Thd+N vs Output Voltage VCC = 17V, VEE = –17V RL = 10kΩ
LME49720 30003863.gif
Figure 13. Thd+N vs Frequency VCC = 15V, VEE = –15V, VOUT = 3VRMS RL = 2kΩ
LME49720 30003864.gif
Figure 15. Thd+N vs Frequency VCC = 17V, VEE = –17V, VOUT = 3VRMS RL = 2kΩ
LME49720 300038k3.gif
Figure 17. Thd+N vs Frequency VCC = 12V, VEE = –12V, VOUT = 3VRMS RL = 600Ω
LME49720 30003867.gif
Figure 19. Thd+N vs Frequency VCC = 15V, VEE = –15V, VOUT = 3VRMS RL = 10kΩ
LME49720 30003868.gif
Figure 21. Thd+N vs Frequency VCC = 17V, VEE = –17V, VOUT = 3VRMS RL = 10kΩ
LME49720 300038e5.gif
Figure 23. IMD vs Output Voltage VCC = 12V, VEE = –12V RL = 2kΩ
LME49720 300038e7.gif
Figure 25. IMD vs Output Voltage VCC = 17V, VEE = –17V RL = 2kΩ
LME49720 300038e0.gif
Figure 27. IMD vs Output Voltage VCC = 12V, VEE = –12V RL = 600Ω
LME49720 300038e1.gif
Figure 29. IMD vs Output Voltage VCC = 2.5V, VEE = –2.5V RL = 600Ω
LME49720 300038f0.gif
Figure 31. IMD vs Output Voltage VCC = 12V, VEE = –12V RL = 10kΩ
LME49720 300038l6.gif
Figure 33. IMD vs Output Voltage VCC = 2.5V, VEE = –2.5V RL = 10kΩ
LME49720 300038h7.gif
Figure 35. Current Noise Density vs Frequency
LME49720 300038c9.gif
Figure 37. Crosstalk vs Frequency VCC = 15V, VEE = –15V, VOUT = 10VRMS AV = 0dB, RL = 2kΩ
LME49720 300038c7.gif
Figure 39. Crosstalk vs Frequency VCC = 12V, VEE = –12V, VOUT = 10VRMS AV = 0dB, RL = 2kΩ
LME49720 300038d1.gif
Figure 41. Crosstalk vs Frequency VCC = 17V, VEE = –17V, VOUT = 10VRMS AV = 0dB, RL = 2kΩ
LME49720 300038d6.gif
Figure 43. Crosstalk vs Frequency VCC = 15V, VEE = –15V, VOUT = 3VRMS AV = 0dB, RL = 600Ω
LME49720 300038d4.gif
Figure 45. Crosstalk vs Frequency VCC = 12V, VEE = –12V, VOUT = 3VRMS AV = 0dB, RL = 600Ω
LME49720 300038d8.gif
Figure 47. Crosstalk vs Frequency VCC = 17V, VEE = –17V, VOUT = 3VRMS AV = 0dB, RL = 600Ω
LME49720 300038d2.gif
Figure 49. Crosstalk vs Frequency VCC = 2.5V, VEE = –2.5V, VOUT = 1VRMS AV = 0dB, RL = 600Ω
LME49720 300038n7.gif
Figure 51. Crosstalk vs Frequency VCC = 15V, VEE = –15V, VOUT = 10VRMS AV = 0dB, RL = 10kΩ
LME49720 300038n6.gif
Figure 53. Crosstalk vs Frequency VCC = 12V, VEE = –12V, VOUT = 10VRMS AV = 0dB, RL = 10kΩ
LME49720 300038n3.gif
Figure 55. Crosstalk vs Frequency VCC = 17V, VEE = –17V, VOUT = 10VRMS AV = 0dB, RL = 10kΩ
LME49720 300038p2.gif
Figure 57. PSRR+ vs Frequency VCC = 15V, VEE = –15V RL = 10kΩ, F = 200kHz, VRIPPLE = 200mvpp
LME49720 300038p3.gif
Figure 59. PSRR+ vs Frequency VCC = 15V, VEE = –15V RL = 2kΩ, F = 200kHz, VRIPPLE = 200mvpp
LME49720 300038p1.gif
Figure 61. PSRR+ vs Frequency VCC = 15V, VEE = –15V RL = 600Ω, F = 200kHz, VRIPPLE = 200mvpp
LME49720 300038p8.gif
Figure 63. PSRR+ vs Frequency VCC = 12V, VEE = –12V RL = 10kΩ, F = 200kHz, VRIPPLE = 200mvpp
LME49720 300038p9.gif
Figure 65. PSRR+ vs Frequency VCC = 12V, VEE = –12V RL = 2kΩ, F = 200kHz, VRIPPLE = 200mvpp
LME49720 300038p7.gif
Figure 67. PSRR+ vs Frequency VCC = 12V, VEE = –12V RL = 600Ω, F = 200kHz, VRIPPLE = 200mvpp
LME49720 300038r0.gif
Figure 69. PSRR+ vs Frequency VCC = 17V, VEE = –17V RL = 10kΩ, F = 200kHz, VRIPPLE = 200mvpp
LME49720 300038r1.gif
Figure 71. PSRR+ vs Frequency VCC = 17V, VEE = –17V RL = 2kΩ, F = 200kHz, VRIPPLE = 200mvpp
LME49720 300038q9.gif
Figure 73. PSRR+ vs Frequency VCC = 17V, VEE = –17V RL = 600Ω, F = 200kHz, VRIPPLE = 200mvpp
LME49720 300038q4.gif
Figure 75. PSRR+ vs Frequency VCC = 2.5V, VEE = –2.5V RL = 10kΩ, F = 200kHz, VRIPPLE = 200mvpp
LME49720 300038q5.gif
Figure 77. PSRR+ vs Frequency VCC = 2.5V, VEE = –2.5V RL = 2kΩ, F = 200kHz, VRIPPLE = 200mvpp
LME49720 300038q3.gif
Figure 79. PSRR+ vs Frequency VCC = 2.5V, VEE = –2.5V RL = 600Ω, F = 200kHz, VRIPPLE = 200mvpp
LME49720 300038g0.gif
Figure 81. Cmrr vs Frequency VCC = 15V, VEE = –15V RL = 2kΩ
LME49720 300038g3.gif
Figure 83. Cmrr vs Frequency VCC = 17V, VEE = –17V RL = 2kΩ
LME49720 300038o9.gif
Figure 85. Cmrr vs Frequency VCC = 15V, VEE = –15V RL = 600Ω
LME49720 300038g5.gif
Figure 87. Cmrr vs Frequency VCC = 17V, VEE = –17V RL = 600Ω
LME49720 300038o8.gif
Figure 89. Cmrr vs Frequency VCC = 15V, VEE = –15V RL = 10kΩ
LME49720 300038g4.gif
Figure 91. Cmrr vs Frequency VCC = 17V, VEE = –17V RL = 10kΩ
LME49720 300038h1.gif
Figure 93. Output Voltage vs Load Resistance VDD = 15V, VEE = –15v Thd+N = 1%
LME49720 300038h2.gif
Figure 95. Output Voltage vs Load Resistance VDD = 17V, VEE = –17v Thd+N = 1%
LME49720 300038j9.gif
Figure 97. Output Voltage vs Supply Voltage RL = 2kΩ, Thd+N = 1%
LME49720 300038k0.gif
Figure 99. Output Voltage vs Supply Voltage RL = 10kΩ, Thd+N = 1%
LME49720 300038j5.gif
Figure 101. Supply Current vs Supply Voltage RL = 600Ω
LME49720 300038j0.gif
Figure 103. Full Power Bandwidth vs Frequency
LME49720 300038i7.gif
Figure 105. Small-Signal Transient Response AV = 1, CL = 10pf
LME49720 30003828.png
Figure 107. RIAA Preamp Voltage Gain,
RIAA Deviation vs Frequency
LME49720 300038k7.gif
Figure 2. Thd+N vs Output Voltage VCC = 12V, VEE = –12v RL = 2kΩ
LME49720 300038i4.gif
Figure 4. Thd+N vs Output Voltage VCC = 2.5V, VEE = –2.5V RL = 2kΩ
LME49720 300038l0.gif
Figure 6. Thd+N vs Output Voltage VCC = 12V, VEE = –12V RL = 600Ω
LME49720 300038i6.gif
Figure 8. Thd+N vs Output Voltage VCC = 2.5V, VEE = –2.5V RL = 600Ω
LME49720 300038l3.gif
Figure 10. Thd+N vs Output Voltage VCC = 12V, VEE = –12V RL = 10kΩ
LME49720 300038i5.gif
Figure 12. Thd+N vs Output Voltage VCC = 2.5V, VEE = –2.5V RL = 10kΩ
LME49720 30003862.gif
Figure 14. Thd+N vs Frequency VCC = 12V, VEE = –12V, VOUT = 3VRMS RL = 2kΩ
LME49720 30003859.gif
Figure 16. Thd+N vs Frequency VCC = 15V, VEE = –15V, VOUT = 3VRMS RL = 600Ω
LME49720 30003860.gif
Figure 18. Thd+N vs Frequency VCC = 17V, VEE = –17V, VOUT = 3VRMS RL = 600Ω
LME49720 30003866.gif
Figure 20. Thd+N vs Frequency VCC = 12V, VEE = –12V, VOUT = 3VRMS RL = 10kΩ
LME49720 300038e6.gif
Figure 22. IMD vs Output Voltage VCC = 15V, VEE = –15V RL = 2kΩ
LME49720 300038e4.gif
Figure 24. IMD vs Output Voltage VCC = 2.5V, VEE = –2.5V RL = 2kΩ
LME49720 300038e2.gif
Figure 26. IMD vs Output Voltage VCC = 15V, VEE = –15V RL = 600Ω
LME49720 300038e3.gif
Figure 28. IMD vs Output Voltage VCC = 17V, VEE = –17V RL = 600Ω
LME49720 300038f1.gif
Figure 30. IMD vs Output Voltage VCC = 15V, VEE = –15V RL = 10kΩ
LME49720 300038f2.gif
Figure 32. IMD vs Output Voltage VCC = 17V, VEE = –17V RL = 10kΩ
LME49720 300038h6.gif
Figure 34. Voltage Noise Density vs Frequency
LME49720 300038c8.gif
Figure 36. Crosstalk vs Frequency VCC = 15V, VEE = –15V, VOUT = 3VRMS AV = 0dB, RL = 2kΩ
LME49720 300038c6.gif
Figure 38. Crosstalk vs Frequency VCC = 12V, VEE = –12V, VOUT = 3VRMS AV = 0dB, RL = 2kΩ
LME49720 300038d0.gif
Figure 40. Crosstalk vs Frequency VCC = 17V, VEE = –17V, VOUT = 3VRMS AV = 0dB, RL = 2kΩ
LME49720 300038n8.gif
Figure 42. Crosstalk vs Frequency VCC = 2.5V, VEE = –2.5V, VOUT = 1VRMS AV = 0dB, RL = 2kΩ
LME49720 300038d7.gif
Figure 44. Crosstalk vs Frequency VCC = 15V, VEE = –15V, VOUT = 10VRMS AV = 0dB, RL = 600Ω
LME49720 300038d5.gif
Figure 46. Crosstalk vs Frequency VCC = 12V, VEE = –12V, VOUT = 10VRMS AV = 0dB, RL = 600Ω
LME49720 300038d9.gif
Figure 48. Crosstalk vs Frequency VCC = 17V, VEE = –17V, VOUT = 10VRMS AV = 0dB, RL = 600Ω
LME49720 300038o0.gif
Figure 50. Crosstalk vs Frequency VCC = 15V, VEE = –15V, VOUT = 3VRMS AV = 0dB, RL = 10kΩ
LME49720 300038n9.gif
Figure 52. Crosstalk vs Frequency VCC = 12V, VEE = –12V, VOUT = 3VRMS AV = 0dB, RL = 10kΩ
LME49720 300038n5.gif
Figure 54. Crosstalk vs Frequency VCC = 17V, VEE = –17V, VOUT = 3VRMS AV = 0dB, RL = 10kΩ
LME49720 300038n4.gif
Figure 56. Crosstalk vs Frequency VCC = 2.5V, VEE = –2.5V, VOUT = 1VRMS AV = 0dB, RL = 10kΩ
LME49720 300038p5.gif
Figure 58. PSRR- vs Frequency VCC = 15V, VEE = –15V RL = 10kΩ, F = 200kHz, VRIPPLE = 200mvpp
LME49720 300038p6.gif
Figure 60. PSRR- vs Frequency VCC = 15V, VEE = –15V RL = 2kΩ, F = 200kHz, VRIPPLE = 200mvpp
LME49720 300038p4.gif
Figure 62. PSRR- vs Frequency VCC = 15V, VEE = –15V RL = 600Ω, F = 200kHz, VRIPPLE = 200mvpp
LME49720 300038q1.gif
Figure 64. PSRR– vs Frequency VCC = 12V, VEE = –12V RL = 10kΩ, F = 200kHz, VRIPPLE = 200mvpp
LME49720 300038q2.gif
Figure 66. PSRR– vs Frequency VCC = 12V, VEE = –12V RL = 2kΩ, F = 200kHz, VRIPPLE = 200mvpp
LME49720 300038q0.gif
Figure 68. PSRR– vs Frequency VCC = 12V, VEE = –12V RL = 600Ω, F = 200kHz, VRIPPLE = 200mvpp
LME49720 300038r3.gif
Figure 70. PSRR– vs Frequency VCC = 17V, VEE = –17V RL = 10kΩ, F = 200kHz, VRIPPLE = 200mvpp
LME49720 300038r4.gif
Figure 72. PSRR– vs Frequency VCC = 17V, VEE = –17V RL = 2kΩ, F = 200kHz, VRIPPLE = 200mvpp
LME49720 300038r2.gif
Figure 74. PSRR– vs Frequency VCC = 17V, VEE = –17V RL = 600Ω, F = 200kHz, VRIPPLE = 200mvpp
LME49720 300038q7.gif
Figure 76. PSRR– vs Frequency VCC = 2.5V, VEE = –2.5V RL = 10kΩ, F = 200kHz, VRIPPLE = 200mvpp
LME49720 300038q8.gif
Figure 78. PSRR– vs Frequency VCC = 2.5V, VEE = –2.5V RL = 2kΩ, F = 200kHz, VRIPPLE = 200mvpp
LME49720 300038q6.gif
Figure 80. PSRR– vs Frequency VCC = 2.5V, VEE = –2.5V RL = 600Ω, F = 200kHz, VRIPPLE = 200mvpp
LME49720 300038f7.gif
Figure 82. Cmrr vs Frequency VCC = 12V, VEE = –12V RL = 2kΩ
LME49720 300038f4.gif
Figure 84. Cmrr vs Frequency VCC = 2.5V, VEE = –2.5V RL = 2kΩ
LME49720 300038f9.gif
Figure 86. Cmrr vs Frequency VCC = 12V, VEE = –12V RL = 600Ω
LME49720 300038f6.gif
Figure 88. Cmrr vs Frequency VCC = 2.5V, VEE = –2.5V RL = 600Ω
LME49720 300038f8.gif
Figure 90. Cmrr vs Frequency VCC = 12V, VEE = –12V RL = 10kΩ
LME49720 300038f5.gif
Figure 92. Cmrr vs Frequency VCC = 2.5V, VEE = –2.5V RL = 10kΩ
LME49720 300038h0.gif
Figure 94. Output Voltage vs Load Resistance VDD = 12V, VEE = –12v Thd+N = 1%
LME49720 300038g9.gif
Figure 96. Output Voltage vs Load Resistance VDD = 2.5V, VEE = –2.5v Thd+N = 1%
LME49720 300038j8.gif
Figure 98. Output Voltage vs Supply Voltage RL = 600Ω, Thd+N = 1%
LME49720 300038j6.gif
Figure 100. Supply Current vs Supply Voltage RL = 2kΩ
LME49720 300038j7.gif
Figure 102. Supply Current vs Supply Voltage RL = 10kΩ
LME49720 300038j1.gif
Figure 104. Gain Phase vs Frequency
LME49720 300038i8.gif
Figure 106. Small-Signal Transient Response AV = 1, CL = 100pf
LME49720 30003829.png
Figure 108. Flat Amp Voltage Gain vs Frequency