SNAS947 May   2025 LMK1C1102A , LMK1C1103A , LMK1C1104A , LMK1C1106A , LMK1C1108A

PRODUCTION DATA  

  1.   1
  2. Features
  3. Applications
  4. Description
  5. Device Comparison
  6. Pin Configuration and Functions
  7. Specifications
    1. 6.1 Absolute Maximum Ratings
    2. 6.2 ESD Ratings
    3. 6.3 Recommended Operating Conditions
    4. 6.4 Thermal Information
    5. 6.5 Electrical Characteristics
    6. 6.6 Timing Requirements
    7. 6.7 Typical Characteristics
  8. Parameter Measurement Information
  9. Detailed Description
    1. 8.1 Overview
    2. 8.2 Functional Block Diagram
    3. 8.3 Feature Description
      1. 8.3.1 Fail-Safe Inputs
      2. 8.3.2 Asynchronous Output Enable
    4. 8.4 Device Functional Modes
  10. Application and Implementation
    1. 9.1 Application Information
    2. 9.2 Typical Application
      1. 9.2.1 Design Requirements
      2. 9.2.2 Detailed Design Procedure
    3. 9.3 Power Supply Recommendations
    4. 9.4 Layout
      1. 9.4.1 Layout Guidelines
      2. 9.4.2 Layout Example
  11. 10Device and Documentation Support
    1. 10.1 Documentation Support
      1. 10.1.1 Related Documentation
    2. 10.2 Receiving Notification of Documentation Updates
    3. 10.3 Support Resources
    4. 10.4 Trademarks
    5. 10.5 Electrostatic Discharge Caution
    6. 10.6 Glossary
  12. 11Revision History
  13. 12Mechanical, Packaging, and Orderable Information
    1. 12.1 Tape and Reel Information

Package Options

Refer to the PDF data sheet for device specific package drawings

Mechanical Data (Package|Pins)
  • PW|8
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Asynchronous Output Enable

Asynchronous output enable immediately turns on the output when 1G pin is pulled high with minimum delay specified in Section 6 compared to synchronous enable which relies on the input clock cycle to synchronize the outputs before enabling.

Asynchronous output enable is useful in applications like 1PPS where fast output enable is necessary. With 1G pin assertion, outputs are activated immediately compared to synchronous output enable. This feature is also useful for other SYNC signal applications where extra delay is unwanted.

Another useful feature for asynchronous output is using static "High" or "Low" signal during power up. Asynchronous output enable devices are not bound with input clock edges so if the clock input is static "High" the outputs follow the input and go "High" during power up. See Section 4 for available output enable options from TI.