SNIS192C November   2016  – June 2018 LMT01-Q1

PRODUCTION DATA.  

  1. Features
  2. Applications
    1.     LMT01-Q1 Accuracy
  3. Description
    1.     2-Pin IC Temperature Sensor
  4. Revision History
  5. Pin Configuration and Functions
    1.     Pin Functions
  6. Specifications
    1. 6.1  Absolute Maximum Ratings
    2. 6.2  ESD Ratings
    3. 6.3  Recommended Operating Conditions
    4. 6.4  Thermal Information
    5. 6.5  Electrical Characteristics
    6. 6.6  Electrical Characteristics - TO-92/LPG Pulse Count to Temperature LUT
    7. 6.7  Electrical Characteristics - WSON/DQX Pulse Count to Temperature LUT
    8. 6.8  Switching Characteristics
    9. 6.9  Timing Diagram
    10. 6.10 Typical Characteristics
  7. Detailed Description
    1. 7.1 Overview
    2. 7.2 Functional Block Diagram
    3. 7.3 Feature Description
      1. 7.3.1 Output Interface
      2. 7.3.2 Output Transfer Function
      3. 7.3.3 Current Output Conversion to Voltage
    4. 7.4 Device Functional Modes
  8. Application and Implementation
    1. 8.1 Application Information
      1. 8.1.1 Mounting, Temperature Conductivity, and Self-Heating
    2. 8.2 Typical Application
      1. 8.2.1 3.3-V System VDD MSP430 Interface - Using Comparator Input
        1. 8.2.1.1 Design Requirements
        2. 8.2.1.2 Detailed Design Procedure
          1. 8.2.1.2.1 Setting the MSP430 Threshold and Hysteresis
        3. 8.2.1.3 Application Curves
    3. 8.3 System Examples
  9. Power Supply Recommendations
  10. 10Layout
    1. 10.1 Layout Guidelines
    2. 10.2 Layout Example
  11. 11Device and Documentation Support
    1. 11.1 Receiving Notification of Documentation Updates
    2. 11.2 Community Resources
    3. 11.3 Trademarks
    4. 11.4 Electrostatic Discharge Caution
    5. 11.5 Glossary
  12. 12Mechanical, Packaging, and Orderable Information

Package Options

Mechanical Data (Package|Pins)
Thermal pad, mechanical data (Package|Pins)
Orderable Information

Output Interface

The LMT01-Q1 provides a digital output in the form of a pulse count that is transmitted by a train of current pulses. After the LMT01-Q1 is powered up, it transmits a very low current of 34 µA for less than 54 ms while the part executes a temperature to digital conversion, as shown in Figure 16. When the temperature-to-digital conversion is complete, the LMT01-Q1 starts to transmit a pulse train that toggles from the low current of 34 µA to a high current level of 125 µA. The pulse train total time interval is at maximum 50 ms. The LMT01-Q1 transmits a series of pulses equivalent to the pulse count at a given temperature as described in Electrical Characteristics - TO-92/LPG Pulse Count to Temperature LUT. After the pulse count has been transmitted the LMT01-Q1 current level will remain low for the remainder of the 50 ms. The total time for the temperature to digital conversion and the pulse train time interval is 104 ms (maximum). If power is continuously applied, the pulse train output will repeat start every 104 ms (maximum).

LMT01-Q1 Timing_02_SNIS189.gifFigure 16. Temperature to Digital Pulse Train Timing Cycle

The LMT01-Q1 can be powered down at any time to conserve system power. Take care to ensure that a minimum power-down wait time of 50 ms is used before the device is turned on again.